

Billing and Collection
2.3.0

User Guide

Copyright © FintechOS 2022. All rights reserved.

TOC
Overview 6
Installing Billing and Collection 10

Prerequisites 10

Payments Management 15
Invoices 19

Invoices View 20
Invoice Form 22
Remove Installments from Invoices 24

Bank Statements 28
Bank Statements View 29
Uploading Bank Statements 30

Payments 36
Payments View 36
Insert Payment Form 38

Unallocated Payments 40
Unallocated Payments View 41
Unallocated Payments Form 42
Allocating Payments 45
Deallocating Payments 51

Outgoing Payments Operations 53
Outgoing Payment Requests 54

Outgoing Payment Requests View 55

Outgoing Payment Requests Form 56

Approving Outgoing Payment Requests 59

Outgoing Payments Instruction Files 65

TABLE OF CONTENTS 2

BILLING AND COLLECTION USER GUIDE

OPI Files View and Form 65

Adding Payment Requests 67
Returning Payments 72

Direct Debit 78
Setting The Solution For DIDE Processing 79
Direct Debit Business Workflow 82
Direct Debit SEPA 86

External Reports 97

Direct Debit UK 106
Direct Debit UK Functionalities 115

Configurations 130
Flow Parameters and Scheduled Jobs 131

1 Flow Parameters 131
2 Scheduled Jobs 137

Import Bank Statements 140
Payment Group Insert Journey 140
Payment Group Journey 140
Business Workflow Configurations Actions 141
Server Side Script Libraries 142

Incoming Payments 157
Invoice Generation 158

Scheduled Job 158

Server Automation Scripts 158

Server Automation Script Libraries 159

Filtering Configurations 169

Automatic Allocation 173
Payment Allocation 173

Payment Deallocation 181

Manual Allocation 185

TABLE OF CONTENTS 3

BILLING AND COLLECTION USER GUIDE

FTOS_PYMT_Payment_EditForm Journey 185

Server Automation Scripts 188

Server Automation Script Library 189

SEPA Direct Debit 195
Digital Journeys 195

On Demand Server Automation Scripts 197

Business Workflow Configuration Actions 198

Endpoints 200

Processors 200

Sequencers 200

Server Side Script Libraries 201

Scheduled Jobs 220

UK Direct Debit 221
Digital Journeys 221

On Demand Scripts 225

Business Workflow Configuration Actions 226

Endpoints 227

Processors 228

Server Side Script Libraries 231

Scheduled Jobs 248

Outgoing Payments 249
Outgoing Payments Admin 250

FTOS_PYMT_Payment_EditFormOutgoing Journey 250

FTOS_PYMT_OutgoingPaymentFileReadOnly Form Journey 252

On Demand Scripts 252

Endpoints 252

Server Side Script Libraries 253

Scheduled jobs 257

Outgoing Payments Allocation 257
Server Automation Scripts 257

TABLE OF CONTENTS 4

BILLING AND COLLECTION USER GUIDE

Outgoing Payment Deallocation 259

Manual Outgoing Payment Requests 261
Form Client Side Scripts 262

Endpoints 264

Server Side Script Libraries 265

FTOS_GetAccountData 265

FTOS_OutgoingPaymentRequest 266

On Demand Scripts 271

Billing And Collection Endpoints 271
Generate Statements API 274
Generate Outgoing Payments API 286
Generate UK Direct Debit Mandate API 298

Billing Notifications 302
Server Side Script Libraries 302
Processors 305
Business Workflow Configuration Actions 305
On Demand Scripts 306
Scheduled jobs 307

Security Roles 307
Digital Assets 311

Dashboards 313
Glossary 315

TABLE OF CONTENTS 5

BILLING AND COLLECTION USER GUIDE

Overview
Billing and Collection is a highly customizable FintechOS solution that enables
insurance companies to effectively speed up their quote-to-cash journey by
automating routines unique to billing and collection processing, along with offering a
series of digital journeys that flawlessly guide users through their manual operations -
such as completing payment allocations or introducing a new payment request, in a
timely and accurate manner.

With Billing and Collection, invoicing is automatic only. Invoices are constantly
generated into your system for all your insurance products that are in Active status.
For billing and collection operations, you can use the solution in conjunction with
online payment processors as well as bank payment orders. Furthermore, uploading a
bank statement file for your bank accounts triggers the automatic parsing, sorting,
and matching of the Payment data - contained by the file, with the Invoices or
Payment Requests already registered into your system. For payments that respect
some rules, such as providing the correct unique identifier for an installment or the
number of the policy, the allocation flow is also completely automated - this way, you
can understand faster what invoices have been paid, and which haven’t.

On top of that, Billing and Collection offers insurers alternative ways to:

 l increase safety when handling sensitive information - such as payment data, in
comparison with the traditional, paper-based methods.

 l implement the flexibility required to accommodate payment constraints along
with payment updates, based on policy adjustments.

 l achieve high proficiency in keeping track of the ever-growing payment-related
data.

 l manage their operations in a completely safeguarded and accurate manner.

Additionally, in order to accommodate the differences regarding the direct debit
payments, the Billing and Collection solution has dedicated workflows for the Single
Euro Payments Area (SEPA) and for the UK financial area.

When necessary, the Billing and Collection solution can be personalized in accordance
with specific requirements from insurance companies. Thus, implementation time is
shortened, while you can make sure that each component fulfills your business needs.

TABLE OF CONTENTS 6

BILLING AND COLLECTION USER GUIDE

For example using Billing and Collection along with different FintechOS Automation
Processors enables insurance companies to digitize workflows and improve accuracy,
while also reducing the amount of time spent on other routine business operations.

The present guide helps you discover how to make the best use out of the Billing and
Collection solution.

Business Pain Points
FintechOS clients use the Billing and Collection solution to respond to
different challenges related to:

 l time-consuming routines;

 l routines more prone to human error when done manually;

 l complex recurring billing and collection scenarios;

 l the sheer volume of collection activities;

 l little time to identify and deal with discrepancies in collections.

Billing and Collection Key Features
The solution has the following key features:

 l The administration of different payment requests received from
different sources or systems like claim payments, commissions
payments, broker balance (credit) payments etc.

 l Processing bank statements files in various formats - e.g. the MT940
format, used in SEPA area.

 l Identifying the outgoing payments (including bank charges) in a bank
statements file.

 l The automatic generation of a payment instruction file based on the
received payment request.

 l The allocation of the confirmed outgoing payments (e.g. from a bank
statement) to the specific payment request.

TABLE OF CONTENTS 7

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/APs/Home.htm
https://docs.fintechos.com/APs/Home.htm

 l The possibility to send notifications with the payment confirmation,
and more.

Billing and Collection Key Benefits
The benefits of using Billing and Collection are the following:

 l works easy with volumes;

 l processing payments from bank account statements;

 l processing payments from online payment processors;

 l automated and manual payment allocation and deallocation;

 l scales from the simplest of billing and collection models to the most
complex ones;

 l manages one-time and low usage billing and collection scenarios and
also the frequently recurring ones;

 l speeds up billing and collection processes by automating routines;

 l reduces the risk of human error while handling accounts;

 l frees up time for where attention is really needed: selling more
insurance!

Billing and Collection Key Steps
For incoming payments:

 1. Load new statement for your bank accounts, obtained from your bank
or from an online payments processor.

 2. Import payment data. Allocation is automatic for payments with details filled-

in correctly.

 3. Deal with unallocated payments. Unallocated payments are returned

TABLE OF CONTENTS 8

BILLING AND COLLECTION USER GUIDE

automatically after a configurable number of days.

 4. After manual allocation, close payments.

For outgoing payments:

 1. Load new statement for your bank accounts, obtained from your bank.

 2. Import payment data.

 3. Deal with outgoing payment requests. For recurring outgoing payment

requests (such as broker payments) allocation is automatic and configurable.

 4. After manual approval, close outgoing payment requests.

For more details about how you can administer payments with Billing and
Collection, please consult the Payments Management page.

HINT
Integrate Billing and Collection with more FintechOS solutions for insurance in
order to make the best of process automation for your company, portfolios,
products and clients!

TABLE OF CONTENTS 9

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Insurance/Home.htm

Installing Billing and
Collection
Follow the instructions below to install and configure Billing and Collection v2.3.0.

Prerequisites
Before installing or upgrading to Billing and Collection v2.3.0, make sure the following
are already installed:

 l HPFI v22.1.0

 l SySDigitalSolutionPackages v21.2.2301

 l Core Insurance Master v2.3.0

IMPORTANT!
If you already have Billing and Collection Import v2.2.0 installed, then you need to
install Billing And Collection Import Upgrade v2.3.0 instead.

Below you can find instructions for clean installing or upgrading to Billing and
Collection v2.3.0.

Billing and Collection v2.3.0 Clean Install
Install the following packages, in this exact order:

 1. Billing and Collection v2.3.0

 2. Billing and Collection Import v2.3.0

Follow the steps below:

TABLE OF CONTENTS 10

BILLING AND COLLECTION USER GUIDE

1. In Innovation Studio, import and install the Billing and Collection digital
solution by following the standard procedure.

2. After installing the Billing and Collection digital solution, run the SQL
scripts from Billing and Collection folder.

3. After installing the Billing and Collection v2.3.0 digital solution, perform
the following configurations:

3.1 Check System Parameter value:

3.1.1 - In Innovation Studio, set your context to Core Insurance
Master digital asset as described in the Editing Digital Assets
page.

3.1.2 - Go to Main Menu > Admin > System Parameters.

3.1.3 - Search BillingUsed parameter and open it for edit.

3.1.4 - Set the value to 1. Next, click Save and close to enable the
use of Billing and Collection solution.

3.2 Add vault keys for Portal app-settings:

Attention!
Add/modify the Vault keys for the Portal app-settings:
Identify the following keys and add their values with your
SMTP information:
{
"baseUrlApi": "PORTALAPI_URL *",
"clientApi": "yourClient",
"userApi": "yourUserName",
"passwordApi": "youUserPass",
"SMTP:Port": "***",
"SMTP:Host": "***",
"SMTP:EnableSSL": "0",
"SMTP:User": "***",
"SMTP:Password": "***",
"DefaultFromEmail": "***"
}
* URL of the portal site using EBSDefaultAuthentication =
EBS
*** = your SMTP information

3.3 Add vault keys for Innovation Studio app-settings:

TABLE OF CONTENTS 11

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Studio/22.1/UserGuide/Content/Deployment/DeploymentPackages/importDeploymentPackage.htm
https://docs.fintechos.com/Studio/22.1/UserGuide/Content/ConfigurationManagement/editingDigitalAssets.htm

Attention!
Add/modify the Vault keys for the Studio app-settings:
Identify the following keys and add their values:
{
"SMTP:Port": "***",
"SMTP:Host":"***",
"SMTP:EnableSSL":"0",
"SMTP:User":"***",
"SMTP:Password":"***",
"DefaultFromEmail":"***"
}
*** = your SMTP information

3.4 Add vault keys for Job Server app-settings:

Attention!
Add/modify the Vault keys for the Job server app-settings:
Identify the following keys and add their values with your
SMTP information:
{
"UploadFolder": "yourPath:\Sites\UploadEBS",
"AttachmentPath": "yourPath:\Sites\UploadEBS",
"FileUploadWhiteList":
".pdf,.doc,.docx,.els,.jpg,.jpeg,.xlsx,.dll,.ppt,.pptx,.txt,
.png,.ttf,.xml",
"baseUrlApi": "PORTALAPI_URL *",
"clientApi": "yourClient",
"userApi": "yourUserName",
"passwordApi": "youUserPass",
"SMTP:Port": "***",
"SMTP:Host": "***",
"SMTP:EnableSSL": "0",
"SMTP:User": "***",
"SMTP:Password": "***",
"DefaultFromEmail": "***",
}
* URL of the portal site using EBSDefaultAuthentication =
EBS
*** = your SMTP information

IMPORTANT!
The UploadFolder and AttachmentPath keys are not needed for a job

TABLE OF CONTENTS 12

BILLING AND COLLECTION USER GUIDE

server installed as an web app. Instead, use the standard configuration
steps to allow the job server access to the blob storage used by the other
sites (to the same UploadEBS folder).

4. Follow step 1 to import and install the Billing and Collection Import
v2.3.0.

5. After installing the Billing and Collection Import v2.3.0 digital solution, run
the SQL scripts from the Billing and Collection Import folder.

6. After installing the Billing and Collection Import v2.3.0 digital solution,
perform the following configurations:

6.1 Approve all Insurance Parameters as described below:

6.1.1 - In the Portal, go to Main Menu > Settings > Insurance
Parameters.

6.1.2 - Select a Parameter record and open it for edit.

6.1.3 - Use the status picker, from top left corner, to change the
parameter status from Draft to Approved.

6.1.4 - Repeat for all Insurance Parameters in Draft status.

Billing and Collection v2.3.0 Upgrade
Upgrade to the following packages, in this exact order:

 1. Billing and Collection v2.3.0

 2. Billing and Collection Import Upgrade v2.3.0

Follow the steps below:

1. In Innovation Studio, import and install the Billing and Collection v2.3.0
digital solution by following the standard procedure.

2. After installing the Billing and Collection v2.3.0 digital solution, run the
SQL scripts from Billing and Collection folder.

TABLE OF CONTENTS 13

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Studio/22.1/UserGuide/Content/Deployment/DeploymentPackages/importDeploymentPackage.htm

3. After installing the Billing and Collection v2.3.0 digital solution, perform
the configurations described at step 3, inside the clean install section.

4. Follow step 1 to import and install the Billing and Collection Import
Upgrade v2.3.0.

TABLE OF CONTENTS 14

BILLING AND COLLECTION USER GUIDE

Payments Management
The Billing and Collection solution makes payment tracking effortless, it enables you
to improve accuracy and completion time for your billing and collection routines and
lets you process different types of payments, received from different sources or
systems, manually or automatically.

Below, a diagram of the Billing and Collection main allocation flows:

Here is how the solution works:

Invoices

TABLE OF CONTENTS 15

BILLING AND COLLECTION USER GUIDE

Invoices are automatically generated in the system for all your active
products, according to the settings you configured for each product. For
example a payment schedule is attached to a policy and, consequently, the
invoices are generated in the system according to that particular schedule.
The Billing and Collection automatic invoicing covers multiple scenarios and
can scale from simple to complex ones. For more details about invoice
settings at the product level, consult the Insurance Product Factory
documentation and, for scheduling payments, consult the Policy Admin
documentation.

Bank Statements

The Bank Statements feature allows you to add payments in the system.
Uploading the bank statements for your accounts in the system triggers the
automatic parsing, sorting, and matching of the Payment data - contained by
the file, with your Invoices or, depending on the case, with your Payment
Requests. For payments that respect some rules - such as providing the
correct unique identifier for an installment or the number of the policy, the
allocation flow is completely automated. You can also add payment data
from online payment processors - such as PayU. You can integrate Billing and
Collection with any payment processor in order to complete the collection
operations.

Payments

TABLE OF CONTENTS 16

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/APs/InsuranceProductFactory/4.1/UserGuide/Content/InsuranceProducts.htm
https://docs.fintechos.com/DJs/PolicyAdmin/3.0/UserGuide/Content/Home.htm

The Payments section offers an overview of all your payments, incoming and
outgoing, with their current business statuses - such as Unallocated, Partially
Allocated, and Closed. This view is automatically and continuously updated
with new payment data, as it is progressively fed into the system
automatically, or registered manually, and processed by the system. This is
an all-inclusive view; yet, you can also search and sort your payments for
easier processing. For example if you want to view all the Incoming
payments, you can use the Search by Payment Category option and sort all
your payment data accordingly.

Unallocated Payments

Unallocated Payments is the section where you can see all incoming
payments that the system was unable to allocate automatically - for example
a policyholder made a payment without indicating the installment number or
the policy number. You can either use the Allocate or the Return manual
flow, in order to deal with the selected unallocated payment. Manual
allocation can be done either backward-looking or forward-looking. You
perform backward-looking manual allocation when you allocate a payment
on an invoice (which is already issued in the system). Or you perform a
forward-looking manual allocation when you allocate a payment on a future
installment (since every policy has an agreed installments schedule, also
registered in the system). The manual return flow integrates with the
outgoing payments flow. For details, see the section below.

Outgoing Payment Requests

TABLE OF CONTENTS 17

BILLING AND COLLECTION USER GUIDE

The Outgoing Payment Requests functionality eases the management of
payment requests received from different sources - such as when you import
bank statement files, when you return an unallocated payment, when you
receive a request through an API call or manually introduce a request for
payment in the system. For some of your recurring outgoing payments
scenarios - like paying brokers commissions, you can configure the system to
automatically allocate the outgoing payments. For other scenarios, you use
the manual flow that lets you propose, approve or decline outgoing payment
requests according to your needs.

For more details about the functionality used to allocate outgoing payments,
see also the Outgoing Payments Instruction Files page.

Direct Debit Payments

The Billing and CollectionDirect Debit functionality helps insurers to handle
direct debit payment operations.

Once the policyholder agreed to pay the premiums by direct debit, the
insurer initiates a direct debit activation procedure in order to notify the
bank about the payment arrangement. After the mandate is activated by the
bank, the insurer must regularly send the necessary payment instructions, in
order for the bank to transfer the agreed premium amounts into insurer's
accounts.

In order to accommodate the differences regarding the direct debit
payments, the Billing and Collection solution has dedicated workflows for
the Single Euro Payments Area (SEPA) and for the UK financial area. Each
flow has an overview of the direct debit mandates registered in your system -
with the newest mandate recorded in the system at the top, allowing you to
search and sort the mandates for easier processing. Additionally, each flow
has different menu items that display their respective functionalities and
help you to handle direct debit payments processing according to SEPA or UK

TABLE OF CONTENTS 18

BILLING AND COLLECTION USER GUIDE

regulations. The versioning functionality allows you to edit any mandate, and
all updates are logged into the system. After editing, you must manually
approve the new mandate version.

For direct debit payments that respect some rules (such as correct payment
details, payment is due time), the process or billing and collecting is
completely automated, and you can read about it on the Direct Debit SEPA
and Direct Debit UK pages. For configuring either of the flows to be applied
to your system, go to the Direct Debit page.

Customer Notifications
Customer Notifications is a feature that allows you to automatically notify
your customers about the status of their premium payments, according to
their policy. The Billing and Collection solution allows you to send emails to
the policyholder about the following payment events:

 l the generation of the invoice for an installment (according to the
payment schedule),

 l follow up for unpaid invoices,

 l confirmation of the premium payment.

When generating an invoice that contains multiple policies, the notification
template (email or. pdf) lists all the policies included in the invoice, and the
total amount for that invoice. For more details about this functionality,
consult the Billing Notifications page.

Invoices

An invoice is a request for payment (or payments) based on a contract agreement.

TABLE OF CONTENTS 19

BILLING AND COLLECTION USER GUIDE

For example the insurer provides the agreed coverage in exchange for premiums, paid
by the insured. In this context, at certain dates, the insurer issues requests for the
expected payments, towards the insured. Invoicing for a policy coverage is based on
the policy installments schedule, previously agreed with the policyholder. Yet, the
policy can be adjusted, as agreed by parties. Consequently, the invoicing must attune
to the payment updates - either related to the frequency of installments, the changing
of the payment method (for example from direct debit to online payment) or, if the
case, the currency of the payments.

With the Billing and Collection solution, this scenario is covered: if there is an update
on the policy related to payments, the invoices are issued according to this update.

Invoices are constantly generated into your system for all your insurance products
that are in Active status. Once a new policy is issued into your system, installment
records are automatically generated for that policy in accordance with the policy's
appended installment schedule. Issuing an invoice for every installment on that policy
is based on the date parameters set at the product level and the policy settings with
regard to premium payments - such as the installment schedule.

All newly created invoice records can be found in the Invoices section, inside your
Billing and Collection module.

IMPORTANT!
Invoicing with Billing and Collectionis automatic only.

Invoices View
In your portal, in the Invoices section, you have an overview of the invoices generated
into your system - with the newest invoice at the top. This is an all-inclusive view; yet,
you also can search and sort your payments for easier processing. For example if you
want to view all the invoices in Unpaid status, you can use the Search by Business
Status option and sort all your invoices accordingly.

TABLE OF CONTENTS 20

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/APs/InsuranceProductFactory/4.1/UserGuide/Content/InsuranceProducts.htm

Follow the steps to view your invoices:

 1. In your FintechOS Portal, navigate down the main menu of the Billing and
Collection solution.

 2. From the dropdown list, click Invoices to open the Invoices List.

On the Invoices List page:

 1. To inspect a record from the grid, double-click it.

 2. To edit a record from the grid, double-click it and press Edit. The editing form
allows you only to remove installments, from the selected invoice.

NOTE

You can only edit invoices in Generated, Unpaid or OnGrace status.

 3. To delete a record from the grid, select it and click Delete, at the top right
corner of the page.

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

TABLE OF CONTENTS 21

BILLING AND COLLECTION USER GUIDE

Invoice Form
An invoice generation job runs daily within the system, verifying all the installments
on policies and their payment schedules, for all the insurance products that are in
Active status. This job generates invoices for all the qualifying installments, taking into
account specific billing settings, at policy and product level. When you double-click a
record from the Invoices section, in order to manage an invoice, you launch the
Invoice Form. This form allows you to remove any installment that was placed there
incorrectly. It also allows you to see details about the invoice and the premiums paid,
if the case.

Any Invoice contains the following details:

The Header Section

Field Name Description
Invoice No. The invoice number.
Contractor The contractor of the policy.
Broker ID The Id of the broker - if the invoice is issued for a broker.
Broker Name The name of the broker - if the invoice is issued for a broker.
Invoice Date The date when the invoice is created in the system.
Invoice
Reference The invoice reference to be used in the payment flow.

TABLE OF CONTENTS 22

BILLING AND COLLECTION USER GUIDE

Field Name Description
Invoice
Premium
Amount

The invoice premium amount.

Total Taxes The total taxes calculated for that invoice.
Total
Commission The total commission calculated for that invoice.

Invoice Amount The total amount registered on the invoice.
Currency The currency of the installments registered on the invoice.

Payment Type
The type of payment. It can have the following values: Direct
Debit, Payment Order ("OP", or "bank transfer"), PayU, or
PayUOnTime. The type of payment is set at the policy level.

Due Date The due date for paying the current installment.
Grace Limit
Date The grace limit period - if any.

Paid Amount The paid amount.
Unpaid Amount The unpaid amount.

Scheduled date The date scheduled for paying the installment, set at the policy
level.

For more details about what kind of data is created inside the system, at the
moment of issuing a new invoice, consult the FTOS_PYMT_Statement entity
page.

The Middle Section

TABLE OF CONTENTS 23

BILLING AND COLLECTION USER GUIDE

The Installments section contains details about all the installments
registered on that invoice. And there can be one or more installments listed
inside this grid - for example for the case when an invoice is generated for a
group policy. For the same case (of many installments on the same invoice),
you also can search inside this grid by different keywords - such as Policy No,
Installment No, Due Date, or Status.

Next to each installment record there is a Remove button that becomes
active when you Edit the invoice. For details about editing, consult the
Remove Installments from Invoices section, on this page.

The Bottom Section

The Premiums Collected section contains details about all the premiums
collected on that invoice. And there can be one or more premiums listed
inside this grid - for example for the case when an invoice is generated for a
group policy. For the same case, of many premiums paid on the same invoice,
you also can search inside the grid by different keywords - such as Payment
ID, Payment Registration Date, Payer Name or Business Status.

More about payments in the Payments or Payment Lifecycle pages.

Remove Installments from Invoices
There are cases when you need to remove an installment for an invoice. For example
a policy is adjusted and a new installment schedule is agreed with the policyholder.
Consequently, you need to remove the installment generated based on the outdated
installment schedule.

TABLE OF CONTENTS 24

BILLING AND COLLECTION USER GUIDE

NOTE
You can only remove installments from invoices in Generated, Unpaid or OnGrace
status.

Follow the steps to remove an installment for an invoice:

1. Search and Open the Record

 1. In your FintechOS Portal, navigate down the main menu of the Billing
and Collection solution.

 2. From the dropdown list, click Invoices to open the Invoices List.

On the Invoices List page, use the Search functionality to find your
record. The picture below points to the Search by Business Status
option but you can use some other variables for your search, also. See
the picture for details.

 3. Double click the desired record in order to open it and look for the Edit
button, inside the form. When the selected record opens, you can see
the header of the invoice containing the invoice details The details
from the header section are highlighted in gray - since this information
is not editable.

TABLE OF CONTENTS 25

BILLING AND COLLECTION USER GUIDE

 4. At this step, you can also see below the other two sections of the
invoice - Installments and Premiums Collected.

 5. Continue your journey by pressing Edit. For details on how to continue,
see also the next section.

2. Edit and Save Updates

TABLE OF CONTENTS 26

BILLING AND COLLECTION USER GUIDE

When you press Edit, the Remove buttons become available. Inside the
Installments grid, select the desired installment and press Remove, next to
it. Repeat this step as many times as necessary.

The system keeps a history of your updates: all the removed installments
remain visible inside the Installments grid, highlighted in gray (see the pic
below). The information about removal cannot be edited.

NOTE
The status of the invoice, from which the installment was removed,
changes from Paid to Draft.

Once you finished removing the desired installments, save your updates by
clicking Save - inside the form or by clicking Save and close - at the top right
corner of your screen.

HINT
The Billing and Collection automatic invoicing covers multiple scenarios and can

TABLE OF CONTENTS 27

BILLING AND COLLECTION USER GUIDE

scale from simple to complex ones. For more details about invoice settings at the
product level, consult the Insurance Product Factory documentation and, also,
consult the Policy Admin documentation, for setting scheduling payments.

Bank Statements

The Bank Statements feature helps you add payment data into the system.

Uploading a bank statement file triggers the automatic parsing, sorting, and matching
of the Incoming Payments data - contained by the file, with the Invoices already
registered into your system. For payments that respect some rules - such as providing
the correct unique identifier for an installment or the number of the policy, the
allocation flow is completely automated.

After import, you can find all the new payments into the general list, from the
Payments section. You can recognize the automatically allocated payments by their
Closed business status. If necessary, you can open a record to see the paid amount.
More details about how the system does the sorting of the received payment data, in
the Incoming Payments technical documentation.

You also use this functionality to register Outgoing Payments in the system - namely,
those requests for payments that your bank sends with the bank statement file. More
details about how the system does the sorting of the received payment requests data,
in the Outgoing Payments technical documentation. For some of your recurring
outgoing payments scenarios - like paying the electricity bill, you can configure Billing
and Collection to automatically approve and allocate those types of outgoing
payments. For more details about managing Outgoing Payments with the Billing and
Collection solution, consult the Outgoing Payment Requests page.

TABLE OF CONTENTS 28

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/APs/InsuranceProductFactory/4.1/UserGuide/Content/InsuranceProducts.htm
https://docs.fintechos.com/DJs/PolicyAdmin/3.0/UserGuide/Content/Home.htm

IMPORTANT!
You can delete Bank Statements that contain Unallocated payments only!

Bank Statements View
In your portal, in the Bank Statements section, you have an overview of all your bank
statements imported in the system - with the newest imported bank statement listed
at the top.

This general list also gives you the possibility to search and sort the imported bank
statements for easier processing. For example if you want to view all the imported
bank statements for a certain bank account of yours, you can use the Search by
Payment Account option and sort all your records accordingly.

Follow the steps below to view your bank statements:

 1. In your FintechOS Portal, navigate down the main menu of the Billing and
Collection solution.

 2. From the dropdown list, click Bank Statements to open the Bank Statements
List.

On the Bank Statements List page:

TABLE OF CONTENTS 29

BILLING AND COLLECTION USER GUIDE

 l To inspect a record from the grid, double-click it.

 l To add a new record, click Insert, at the top right corner of the page.

 l To delete a record from the grid, select it and click Delete, at the top right
corner of the page. Clicking Delete triggers the deletion of a bank statement and
all the unallocated payments included in it. However, there is a specific
validation for this user action: in order to delete it, a bank statement must
contain only unallocated payments, otherwise if it contains allocated payments,
the following error message is displayed: “This Bank Statement contains
allocated payments and cannot be deleted!”.

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

Uploading Bank Statements

IMPORTANT!
To import payments, you need to use the standard bank statement file issued by
your bank, for your bank accounts. For example some banks use the MT940 format
file for issuing statements. Also, you use this same functionality to import
standardized files from other payment processors - such as PayU. The Billing and
Collection module can parse through different standardized payment data files.

Follow the steps below to add payment data into your system:

1. Open the Billing and Collection Module
Once you obtained the standardized payments file from your bank...

In your FintechOS Portal, navigate to the Bank Statements List page.

On the Bank Statements List page, at the top right corner, click Insert to
import the new file.

TABLE OF CONTENTS 30

BILLING AND COLLECTION USER GUIDE

2. Import the Bank Statement File

Inside the Import pop-up, fill in the following fields:

Field Description

Payment
Account

From the dropdown, select the bank account standardized file
type and click Ok. The current option set values are: BRD
MT940 EUR, BRD MT940 RON, ING EURO, and ING RON.

Payment Group
Type

From the option set, select the group type for processing
payments. You can choose between OP (bank payment) or
PayU (for online payment processors).

Date The date of the import - is automatically filled-in with the
current date.

TABLE OF CONTENTS 31

BILLING AND COLLECTION USER GUIDE

Field Description

File You can either Add or Drop the file containing the payment
data.

Click Import Data. Click Save and reload, at the top right of your screen.

3. Inspect and Validate Payment Data
After clicking Import Data, the payment data view appears. Notice that the
current status of your record is Draft and the next status is Imported.
Proceed to check the details of your import.

Bank Statement Tab
This first tab is automatically populated with details, either
introduced in the previous step or extracted from the file - such as
the IBAN. You don't need to fill in any details here.

Go to the Payments tab.

Payments Tab
This tab displays all the payments from the imported file. The
payment data is organized as follows:

Incoming Payments
The header section displays the Incoming Payments:

TABLE OF CONTENTS 32

BILLING AND COLLECTION USER GUIDE

Inside this section, the following fields are automatically
populated with details extracted from the imported file.
You don't need to fill in any details here.

Field Description
No. of Payments The number of incoming payments.

Currency The currency of the incoming
payments.

Total Amount The total incoming payment amount
per that bank statement.

Allocated Amount The total amount that the system
managed to allocate automatically.

Unallocated Amount The total amount that the system
failed to allocate automatically.

At the bottom of the section, you can see the Payments
grid - containing every incoming payment extracted from
the imported file. For the case when there are many
incoming payments, you can use the search functionality,
inside this grid, to find a certain payment.

Next to each unallocated incoming payment there is a
Payment Return button. For details about returning
unallocated payments, consult the Returning Payments
section of this guide.

TABLE OF CONTENTS 33

BILLING AND COLLECTION USER GUIDE

Outgoing Payments
The bottom section displays the Outgoing Payments:

Inside this section, the following fields are automatically
populated with details extracted from the imported file.
You don't need to fill in any details here.

Field Description
No. of Outgoing
Payments The number of outgoing payments.

Currency The currency of the outgoing
payments.

Total Amount The total outgoing payment amount
per that bank statement.

At the bottom of the section, you can see the Payments
grid - containing every outgoing payment extracted from
the imported file. For the case when there are many
outgoing payments, you can use the search functionality,
inside this grid, to find a certain outgoing payment.

You notice that next to each unallocated incoming payment
there is a Payment Return button. For details about
returning unallocated payments, consult the Outgoing
Payment Requests section of this guide.

TABLE OF CONTENTS 34

BILLING AND COLLECTION USER GUIDE

Update Business Status

IMPORTANT!
In order for the payment data to be made available for
processing in the system, be further available for manual
allocation flows, payment return or reconciliation processes or
any other payment operations inside the system, you must
validate it by manually changing the business status from Draft
to Imported.

Once you finished checking the payment data, proceed to validate
it. Click the Next Status option set, at the top left corner of the
screen. A pop-up appears and you are asked: "Are you sure that you
want to change the business status?" Click Yes.

After clicking Yes, you notice that the business status of the record
is changed to Imported.

TABLE OF CONTENTS 35

BILLING AND COLLECTION USER GUIDE

After the change of the record business status, the imported
payment data is made available in the system - to be used by other
processes.

HINT
For more information about the import rules and configurations, consult also the
Import Bank Statements technical page.

Payments
Billing and Collection allows you to add payments into the system by importing files
received from the payment processors. The solution can be used in conjunction with
different types of incoming or outgoing payments - such as bank payment orders,
direct debit payments, credit card payments, or payments made through online
processors. The bulk of payment processing is done automatically when you upload
the statement files. For more details about how Billing and Collection handles
payments, see the Incoming Payments or Outgoing Payments pages and also the
Payment Lifecycle page.

Payments View
In your portal, in the Payments section, you can find the repository of all the
payments managed by the Billing and Collection solution.

The Payments section offers you an overview of all your incoming payments, in their
current business statuses Unallocated, Partially Allocated and Closed (for fully
allocated payments). This view is automatically and continuously updated with new
data, as payments are regularly registered and processed by the system.

Double clicking on a payment record that is in Unallocated or Partially Allocated
business status, opens the Unallocated Payments Form that lets you manually
allocate, deallocate or return that payment. For example for an incoming payment

TABLE OF CONTENTS 36

BILLING AND COLLECTION USER GUIDE

you can allocate the sum on a specific installment (partially or entirely) and for an
outgoing payment you can approve the proposed payment request (depending on
security roles).

For step by step instructions, consult also the Unallocated Payments or Outgoing
Payment Requests pages.

This is an all-inclusive view; yet, you also can search and sort your payments for easier
processing. For example if you want to view all the Closed payments - that is
payments that went through all the payment processing steps and reached their final
business status, you can use the Search by Business Status option and sort all your
payment data accordingly.

Follow the steps below to view your payments:

 1. At the top left corner of your FintechOS Portal, click the main menu icon to
open the main dropdown list.

 2. From the main list, click Billing and Collection. A second dropdown opens.

 3. Next, click Payments to go to the Payments List. This is the central repository
for all payments existing in your system.

On the Payments List page:

 l To inspect a record from the grid, double-click it.

 l To add a new record, click Insert, at the top right corner of the page.

TABLE OF CONTENTS 37

BILLING AND COLLECTION USER GUIDE

 l To delete a record from the grid, select it and click Delete, at the top right
corner of the page.

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

Insert Payment Form
Even if rare, there are cases when you need to manually register a payment made by a
customer. For this, you use the Insert Payment Form to add a new payment record, in
the system.

NOTE
You can access this form from the Payments as well as the Unallocated Payments
menus.

Follow the steps below to register a payment:

 1. At the top left corner of your FintechOS Portal, click the main menu icon to
open the main dropdown list.

 2. From the main list, click Billing and Collection. A second dropdown opens.

 3. Next, click Payments to go to the Payments List.

 4. On the Payments List page, click Insert, at the top right corner of the page, to
open the Insert Payment Form.

Below is an example of an insert payment Form:

TABLE OF CONTENTS 38

BILLING AND COLLECTION USER GUIDE

Proceed to insert the necessary details into the form, as follows:

Field Name Description

Payment Type

Use the option set to select a type for the payment. The types are
as follows:

 l paymentOrder,

 l brokerPremiumPayment,

 l paymentUnallocated,

 l bankCharges,

 l outgoingPayment.

Payment ID Give a reference, or ID to the payment you register.
Payment Registration
Date

Use the date picker to choose the date for your payment
registration.

Payer Name The payer name.
Broker The broker name, or reference
Currency The currency of the payment.
Amount The amount that was paid.
Comments Text area for comments.

TABLE OF CONTENTS 39

BILLING AND COLLECTION USER GUIDE

Click Save and close to close the form OR click Save and reload. If the later, the
Unallocated Payments Form opens and you can continue with the allocation flow - to
allocate your freshly registered payment to an installment already existing in the
system. For more details about the manual allocation process, consult the Unallocated
Payments page.

Unallocated Payments

Unallocated Payments is the section where you can see all incoming payments that
the system was unable to allocate automatically - for example a policyholder made a
payment without indicating the installment number or the policy number and the
system does not have the necessary details in order to link (allocate) that paid amount
to any registered installment.

This is also the place where a payment ends up when you don't allocate the payment's
full amount on an invoice. You can either use the Allocate or the Return manual flow,
in order to deal with a payment in Unallocated or Partially Allocated business status.
More details to follow, below.

Even if rare, there are cases when you need to manually register a payment made by a
customer. For this, you use the Insert button to add a new payment record, in the
system. Once the payment registration is finished, upon hitting the Save and reload
button, you are able to continue with the allocation flow. For more details about
inserting a payment, go to the Payments page and scroll down to the Insert Payment
Form section.

IMPORTANT!
The details of an incoming payment record are not editable. You can only (partially
or entirely) allocate, deallocate or return the payment. When the payment is fully
allocated, the record changes its business status to Closed.

TABLE OF CONTENTS 40

BILLING AND COLLECTION USER GUIDE

Unallocated Payments View
In your portal, in the Unallocated Payments section, you have an overview of the
unallocated payments registered into your system - with the newest unallocated
payment at the top. In this list, the Return button next to every record offers a rapid
way to initiate a payment return flow, for the selected payment. More details, in the
Outgoing Payment Requests section.

This is an all-inclusive view; yet, you also can search and sort your payments for easier
processing. For example if you want to view all the payments in Partially Allocated
status, you can use the Search by Business Status option and sort all your payments
accordingly.

Follow the steps below to view your unallocated or partially allocated payments:

 1. In your FintechOS Portal, navigate down the main menu of the Billing and
Collection solution.

 2. From the dropdown list, click Unallocated Payments to go to the Unallocated
Payments List.

On the Unallocated Payments List page:

TABLE OF CONTENTS 41

BILLING AND COLLECTION USER GUIDE

 l To inspect a record from the grid, double-click it.

 l To insert a record, click Insert, at the top right corner of your screen. Go to the
Insert Payment Form section, for more details.

 l To delete a record from the grid, select it and click Delete, at the top right
corner of the page.

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

Unallocated Payments Form
When you double-click a record from the Unallocated Payments section, in order to
manage a payment, you launch the Unallocated Payments Form. This form allows you
to partially or entirely allocate the selected payment, or to propose its return. It also
allows you to deallocate amounts previously allocated - for example for the case when
you allocated an amount on an invoice in error.

Manual allocation can be done either backward-looking - when you allocate a
payment on an invoice (already existing in your system) or forward-looking - when
you allocate a payment on a future installment (triggering the automatic issuing of the
invoice that matches with the payment).

The Unallocated Payments Form contains the following sections:

The Client Payment Section
This is the header section. You use this section to see the Client Payment
details, which are not editable, and to decide which manual flow you are
going to launch - either the Allocate or the Return flow. You also use this
section to check the status of the record, at the top left of your screen.
Below, you can see the header section of a record in Unallocated business
status.

TABLE OF CONTENTS 42

BILLING AND COLLECTION USER GUIDE

The Allocated Invoices Section
This is the middle section. Use this section to:

 l see the Invoices that are currently Allocated on the selected payment.
Depending on the situation, you can see none, one, or more invoices
allocated on the selected payment.

 l check the status of the Total Allocated Amount and the Remaining
Unallocated Amount since their sums update dynamically as a
consequence of your using the form to allocate or deallocate amounts
from the payment.

 l decide if you keep or Remove some of the allocated invoices - since
there may be times when you need to use that Remove button; for
example if you’ve allocated a payment to an invoice by mistake.

Below, you can see the middle section of three different records.

TABLE OF CONTENTS 43

BILLING AND COLLECTION USER GUIDE

The Outgoing Payments Section
This is the bottom section. You use this section to see any amount, from the
selected payment, that was submitted to the outgoing payments flow when
you pressed the Return button, in the header section. Depending on the
situation, you can see none (when you don't press Return) or one draft
outgoing payment request, on the selected payment. If needed, from here,
you can jump directly into the manual Outgoing Payment Request flow, by
double-clicking on the Draft request, inside the grid.

Below, you can see the bottom section of two different records.

TABLE OF CONTENTS 44

BILLING AND COLLECTION USER GUIDE

Allocating Payments
Take the below steps for allocating payments:

1. Launch the Unallocated Payments Form
In order to deal with a payment in Unallocated or Partially Allocated
business status, you must go to the Unallocated Payments List page and
double-click the desired record to open it.

TABLE OF CONTENTS 45

BILLING AND COLLECTION USER GUIDE

This launches the Unallocated Payments Form.

Check the status of your record, at the top left of your screen.

Inside the Unallocated Payments Form, find the Allocate button and click it.

2. Search for Unpaid Invoices
Clicking Allocate activates the Search grid. Scroll down to find this grid,
below the Outgoing Payments Section. Use the Search functionality to sort
through possible results. You might want to search by First Name, or by
Date, or by Amount , etc. Once finished, press Search Invoice.

TABLE OF CONTENTS 46

BILLING AND COLLECTION USER GUIDE

Depending on your search terms, you can see none, one or more Invoices
displayed by the system. Under the Invoices list, a list of Installments
(scheduled at future dates) is also displayed - for the case when you want to
allocate the selected payment to an Installment (partially or entirely).

Below, you can see results from two different searches.

The Invoices and the Installments lists have their own Search functionality to
help you sort through the data.

TABLE OF CONTENTS 47

BILLING AND COLLECTION USER GUIDE

However, there are situations when you cannot work with the current results
and you need to refine your main search. If so, go back to the Search grid and
introduce some other search terms. This time, you might want to try other
search options like Payment Type or to set other Dates - for example so that
the system displays fewer results. You can repeat the search step until you
are satisfied with the results. When so, continue to the next step.

3. Click Add to Allocate
In the search results list, next to every Invoice or Installment you can see the
Add button which offers a rapid way to (partially or entirely) match invoices
or installments with the current unallocated payment. Click Add to allocate
the payment amount on the desired invoice or installment.

Below is an example of some allocation options for a payment amount.

When you click Add, next to an item from the list, the selected invoice or
installment shows up in the upper Allocated Invoices grid. You can scroll up
and check the status of the Total Allocated Amount and the Remaining
Unallocated Amount of the current payment inside this grid.

Below is an example of many allocations inside the Allocated Invoices grid.

TABLE OF CONTENTS 48

BILLING AND COLLECTION USER GUIDE

There are cases when you can't allocate the entire amount with only one
Add. For example some policyholder made a payment that covers multiple
invoices and you need to allocate different amounts on those different
invoices, or maybe that payment covers also a future installment. So, if the
payment is only partially allocated and you need to further allocate the rest
of the amount, you can repeat this step as many times as necessary.

IMPORTANT! If you need to refine you search again, you must scroll-
up and press the Validate button first, to save your allocations and then,
press Allocate, again, to launch a new Search.

Click Add to allocate until you finished making your allocations. Once
finished, scroll up.

4. Validate Your Allocations
In the header section, click Validate. When you click Validate, you can see, at
the top left of your screen, the that the business status of the current record
changed from Unallocated to Closed, if you allocated the entire payment
amount.

TABLE OF CONTENTS 49

BILLING AND COLLECTION USER GUIDE

Below is an example of a record in Closed status.

If, by chance, you did not allocate all the amount, you can validate your
current allocations and leave the rest of the amount to be sent back to the
payer. This is done by pressing the Return button to initiate the return flow
yourself. For more details, consult the page about Returning Payments.

Below is an example of a record in Partially Allocated status.

If, by chance, while making your final check on the payment, you spot an
allocation error - for example an amount allocated to the wrong invoice or
installment, you can deallocate that amount by using the Remove button.

TABLE OF CONTENTS 50

BILLING AND COLLECTION USER GUIDE

Remember that, after using the Remove button, the Total Allocated Amount
and the Remaining Unallocated Amount update their statuses dynamically,
as a consequence of your using the form to allocate or deallocate amounts
from the payment. For more details, consult the page about Deallocating
Payments.

Once finished, press Validate and then press Save&Close, at the top right
corner of your screen, to close the form.

Deallocating Payments
There are cases when you need to deallocate payments from invoices. For example
when an allocation error happens or a customer asks for a refund on a payment made
for a future installment, and so on.

IMPORTANT! The system does not allow you to deallocate payments from
records in Closed status. You can only make these kind of changes on records in
Unallocated or Partially Allocated status.

TABLE OF CONTENTS 51

BILLING AND COLLECTION USER GUIDE

By using the Remove button, you can easily deallocate any amount when necessary.
For doing so, take the below steps:

 1. At the top left corner of your FintechOS Portal, click the main menu icon to
open the main dropdown list.

 2. From the main list, click Billing and Collection. A second dropdown opens.

 3. Next, click Payments to go to the Payments List.

 4. Inside the Payments List page, use the search functionality to find the desired
payment record.

 5. Double click the record to open it and go to the Allocated Invoices grid.

Below is an example of multiple allocated invoices listed inside the Allocated
Invoices grid.

 6. Inside the grid, locate the invoice that you want to deallocate and click the
Remove button next to it.

 7. Repeat the previous step as many times as necessary.

 8. Click Validate to save your updates on the current payment record.

TABLE OF CONTENTS 52

BILLING AND COLLECTION USER GUIDE

After using the Remove button, the Total Allocated Amount and the Remaining
Unallocated Amount update their statuses dynamically, as a consequence of your
using the form to allocate or deallocate amounts from the payment.

NOTE
The status of the payment changes from Partially Allocated to Unallocated if you
remove all the items inside the Allocated Invoices grid.

Outgoing Payments Operations
The Billing and Collection solution helps you manage the payment requests received
from different sources - such as when you import bank statement files, when you
return an unallocated payment or manually introduce a request for payment in the
system.

Check the following pages to see how this functionality works:

Outgoing Payment Requests - for details about the outgoing payment requests View
and Form, and for the payment requests approval flow.

Adding Payment Requests - for details about how to register your payment request.

Returning Payments - for details about the payment return flow.

Outgoing Payments Instruction Files - for details about the instruction files generated
by the system, and used to allocate outgoing payments.

For more technical details, see also the Generate Outgoing Payments API, and
Outgoing Payments pages.

HINT
You can easily find your Draft payment request in the Outgoing Payment Requests
List page by using the Search by Status option.

TABLE OF CONTENTS 53

BILLING AND COLLECTION USER GUIDE

Outgoing Payment Requests

The Outgoing Payment Requests is the section where you find all the outgoing
payments registered into your system.

For some of your recurring outgoing payments scenarios, you can configure Billing
and Collection to automatically approve and allocate those types of outgoing
payments. For other scenarios, you have an outgoing payment request manual
approval flow that lets you approve or decline such requests, according to your needs.
For more details about the functionality used to allocate outgoing payments, see also
the Outgoing Payments Instruction Files page.

With Billing and Collection you can effortlessly manage payment requests received
from different sources or systems - such as Claim payments, Commission, Broker
Balance (Credit), etc. See the examples below:

Payment requests are automatically registered into your system when you use the
Bank Statements functionality to upload your bank statement files. Your import
triggers the automatic parsing, sorting and matching of the Payment data - contained
by the file, with the Outgoing Payments already configured or scheduled by you -
such as broker commissions. For payment requests that respect some rules - such as
providing the correct unique identifier for a broker or the number of the policy under
brokerage, the allocation flow for the outgoing payment is completely automated.
After import, you can find all the new outgoing payments into the Outgoing Payment
Requests section. You can recognize the automatically allocated outgoing payments
by their Paid business status. If necessary, you can open a record to see the paid
amount. More details about how the system does the sorting of the received payment
data, in the Import Bank Statements documentation.

Another example is the receiving of payments request through the Generate Outgoing
Payments API. For example, an insurer uses an external Claims system that calls the
Generate Outgoing Payments API to register a new request for a claim payment. Once
received, the payment request is processed by the Billing and Collection module and

TABLE OF CONTENTS 54

BILLING AND COLLECTION USER GUIDE

automatically registered into the system, in Draft status. Further, you use the manual
approval flow to approve, or decline the request, accordingly. If the payment request
received through the API is already in Approved business status, the system
completes the payment flow, automatically.

Yet another example is when you decide the return of an unallocated incoming
payment. You can return the whole amount or the amount remained after the
allocation operation. The return of Unallocated Payments can be done automatically,
after a configurable number of days. However, for the case of a Partially Allocated
payment, you need to initiate the return flow by yourself. For more details, see the
Returning Payments section. When you press the Return button, you create a Draft
payment request that is automatically populated with the necessary data and
transitioned by the system into the Outgoing Payment Requests section.

Finally, this is also the place where you go in order to manually insert a request for an
outgoing payment into the system, when the case.

Outgoing Payment Requests View

In your portal, the Outgoing Payment Requests section is continuously updated, with
payment request data coming from different sources, as shown in the examples
above. This section offers you an overview of the payment requests registered into
your system, with the newest record at the top.

This is an all-inclusive view; yet, you also can search and sort your records for easier
processing. For example if you want to view all the payment requests in Draft status,
you can use the Search by Status option and sort all your records accordingly.

TABLE OF CONTENTS 55

BILLING AND COLLECTION USER GUIDE

Follow the steps to view your outgoing payments:

 1. In your FintechOS Portal, navigate down the main menu of the Billing and
Collection solution.

 2. From the dropdown list, click Outgoing Payment Requests to open the
Outgoing Payment Requests list, at the left.

On the Outgoing Payment Requests list page:

 l To inspect a record from the grid, double-click it. Depending on security roles,
you can Approve or Cancel a payment request.

 l To add a record, at the top right corner, click Insert. For details, see the Adding
Payment Requests page.

 l To delete a record from the list, select it and click Delete, at the top right corner
of the page.

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

Outgoing Payment Requests Form

When you double-click a record, in order to manage an outgoing payment, you launch
the Outgoing Payment Request Form. This form allows you to propose, approve or, if
the case, cancel a payment request.

The Outgoing Payment Request Form contains the following sections:

The Payment Request Section
This is the header section. You use this section to insert or to inspect the
Outgoing Payment details. Depending on the case, the fields are editable or
not. For example for returning a payment, the details in this section are
already filled in by the system and you only need to use the option sets to
select the Payment Due Date and the Scheduled Date for payment. You also
use this section to check the status of the record, at the top left of your
screen.

Below, you can see the header section of a record in Draft business status.

TABLE OF CONTENTS 56

BILLING AND COLLECTION USER GUIDE

The Payment Beneficiary Section
This is the middle section, which is editable. You use this section to fill in
details about the Payment Beneficiary for the selected outgoing payment.
The option sets make it easier for you to complete the Beneficiary Type and
the Beneficiary Category fields. For more details about the option set values,
see the table below. Depending on the type of outgoing payment, it is
possible to see the Bank field already completed and displayed in a non-
editable form. For example this is the case of a return payment - where the
system already knows which bank sent the payment.

Below, you can see the middle section of an outgoing payment record, with
Bank details already filled in.

Inside the Payment Beneficiary section, the following fields are editable:

TABLE OF CONTENTS 57

BILLING AND COLLECTION USER GUIDE

Field Name Description

Beneficiary Type

The payment beneficiary type. The types are as follows:

 l Payer

 l Insured

 l Contractor

 l Policy Beneficiary

 l Broker

 l Service Provider

 l Other

Beneficiary Category

The beneficiary category. The category types are as
follows:

 l Other

 l Individual Person

 l Legal Person

Name The name of the payment beneficiary.
IBAN The IBAN of the beneficiary.
Bank It is auto-completed, based on the inserted IBAN.

The Payer Details Section
This is the bottom section and it contains your company's details. Here, most
of the fields are auto-filled and non-editable. However, in the Comments
field, you can insert any relevant information to be considered by the user
that is going to approve your request for payment. For example, you can
write "This payment was allocated only partially and we need to return the
rest of the amount." or "This is a payment return." or "Please, approve this
return by noon. Thank you!".

Below, you can see the bottom section of an outgoing payment record, in
Draft status.

TABLE OF CONTENTS 58

BILLING AND COLLECTION USER GUIDE

This section also contains the Cancel payment return and Propose payment
return buttons. You use the buttons in order to either submit your request to
the manual approval flow or cancel the request. When you click the canceling
button, the status of the record changes to Cancelled. Respectively, when
you click the proposal button, the status of the record changes to Proposed.
For more details about the approval, see below.

HINT
Once registered into the system, the referenceNo attribute for any outgoing
payment request is automatically populated by using a sequencer.

Approving Outgoing Payment Requests

See details about how to find your desired record in the Outgoing Payment Requests
View section, at the top of this page. If your record is in Draft status, you must first
make a proposal for an outgoing payment. If your record is in Proposed status
already, go to the Launch the Approval Flow step, below.

Take the below steps for approving payment requests:

1. Launch the Proposal Flow
In order to approve an outgoing payment, you must go to the Outgoing
Payment Requests List page and double-click the desired record to open it.
You can find more details about the steps to reach this list in the Outgoing
Payment Requests View section.

TABLE OF CONTENTS 59

BILLING AND COLLECTION USER GUIDE

Below, you can see an example of an outgoing payment record, in Draft
status.

Double click the selected record to launch the Outgoing Payment Requests
Form.

You can check the status of your record, at the top left of your screen.

Inside the Outgoing Payment Requests Form, fill in the necessary details as
described in The Payment Beneficiary section.

TABLE OF CONTENTS 60

BILLING AND COLLECTION USER GUIDE

Once finished, move to the next step.

2. Propose Your Payment Request
At the bottom of the form, locate the Propose Payment Return button and
click it.

Below, you can see the bottom section of an outgoing payment record, in
Draft status.

TABLE OF CONTENTS 61

BILLING AND COLLECTION USER GUIDE

When you click Propose Payment Return, the selected record is submitted to
the manual outgoing payment request approval flow.

You can check the status of your record, at the top left of your screen. Your
record is currently in Proposed status, as in the example below.

Continue to the next step.

3. Launch the Approval Flow
After pressing the Propose Payment Return button, the second tab of the
Outgoing Payment Request form becomes available. In the first tab, you can
see the details of the request and in the second tab, you can use the buttons
to either Approve or Decline the request. Continue to the next step.

Below, you can see an example of an outgoing payment request form (the
header section), with tabs.

TABLE OF CONTENTS 62

BILLING AND COLLECTION USER GUIDE

4. Click Approve
In the approval tab, click Approve to validate the outgoing payment. When
you click Approve, at the top left of your screen, you can see that the
business status of the current record changed from Proposed to Approved.

Below there are two examples of the same record in Approved status.

TABLE OF CONTENTS 63

BILLING AND COLLECTION USER GUIDE

After approval, the outgoing payment is submitted to the automatic
allocation flow.

NOTE
After a while, and upon a bank statements upload, in which the Billing and
Collection solution received the payment confirmation for that particular
payment request, it registers the confirmation in the system,
automatically inserts the necessary details into the payment confirmation
fields and changes the status of the record to Paid.

Click Save and close at the top right corner of your screen to close the form.

TABLE OF CONTENTS 64

BILLING AND COLLECTION USER GUIDE

HINT
You can easily find your Draft payment request in the Outgoing Payment Requests
List page, at a later date. If needed, use the Search by Status option to find your
record.

Outgoing Payments Instruction Files

The Payments Instruction File is an important element of the automatic payment
management featured by the Billing and Collection solution. This File contains
instructions that trigger the payments from the insurer’s bank account - for a claim
payment, for example. The FTOS_PYMT_OutgoingPayment - the Outgoing Payments
Requests entity, is the source of the Payments Instruction File.

A daily job automatically examines the outgoing payments requests registered into
the system - irrespective of the source, process, or system it came from. Next, it
prepares the File containing the payment instructions for the eligible requests - for
example, for the outgoing payments in Scheduled status. The File is then transmitted
to the bank and the amounts are disbursed from the insurer’s bank account, according
to the instructions.

OPI Files View and Form

In your portal, the O(utgoing) P(ayments) I(nstruction) Files section offers you an
overview of all the payment instruction files generated by the system, with the
newest record registered at the top.

TABLE OF CONTENTS 65

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/DJs/BillingAndCollection/2.2/DataModel/Content/DataModel/FTOS_PYMT_OutgoingPayment.htm

IMPORTANT!
This section contains only the approved payment requests, in Scheduled status.

This is an all-inclusive view; yet, you also can search and sort your records for easier
processing. For example if you want to view the payment instruction file that was
generated in a certain day, you can use the Search by Date option.

Follow the steps to view your outgoing payments instruction files:

 1. In your FintechOS Portal, navigate down the main menu of the Billing and
Collection solution.

 2. From the dropdown list, click Outgoing Payments Instruction Files to open the
Outgoing Payments Instruction Files List window.

 3. On the Outgoing Payments Instruction Files List page, to inspect a record from
the grid, double-click it.

Below is an example of a payments instruction file Form:

TABLE OF CONTENTS 66

BILLING AND COLLECTION USER GUIDE

HINT
You can export one or more records by pressing Export, at the top right corner of
your screen.

Adding Payment Requests
Payment requests are automatically registered by your system - for example, when
you use the Bank Statements functionality to upload your bank statement files or
when you receive an API call, with the payment request details. Consequently, the
Outgoing Payment Requests list view is continuously updated, helping you understand
the requests for payment you received, in real time.

However, there are cases when you need to manually insert a new payment request.
For example for a one-time payment that goes towards a consultancy company.

NOTE
The payer's details (e.g. your company) can be auto-filled by the system. For this you
have to configure a default Payer Name and IBAN, set in the processor FTOS_
PYMT_OutgoingPayments_PayerDetails.

Take the below steps for adding a new payment request:

1. Launch the Outgoing Payment Request Form
In order to insert a new payment request, you must launch the Outgoing
Payment Request Form. In order to do so, take the following steps:

 1. At the top left corner of your FintechOS Portal, click the main menu
icon to open the main dropdown list.

 2. From the main list, click Billing and Collection. A second dropdown
opens.

 3. Next, click Outgoing Payment Requests to go to the Outgoing Payment
Requests List.

TABLE OF CONTENTS 67

BILLING AND COLLECTION USER GUIDE

 4. Inside the Outgoing Payment Requests List page, click Insert, at the
top right of your screen. This launches the Outgoing Payment Request
proposal form. For more details about how this form is structured, go
to the Outgoing Payment Request Form section, from the Outgoing
Payment Requests page.

Proceed to the next step.

2. Insert the Payment Request Details
When you open the Outgoing Payment Request form, you can see the
Payment Request, Payment Beneficiary and Payer Details sections and, also,
you can see that some fields are gray - those are non-editable fields; they are
automatically filled in by the system.

Proceed to insert the necessary details into the Payment Request section, as
follows:

Field Name Description
Payment No Give a registration number to the outgoing payment.

Created On The day when the request is created. This is automatically filled in
by the system.

Payment
Amount The amount to be paid.

Currency The currency of the incoming payment.

Reference No The reference number for the outgoing payment. This is
automatically filled in by the system.

Payment
Type

Use the option set to select a type for the outgoing payment. The
types are as follows:

 l paymentOrder

 l brokerPremiumPayment

 l paymentUnallocated

 l bankCharges

 l outgoingPayment

Payment Due
Date Use the option set to select a due date for the payment.

TABLE OF CONTENTS 68

BILLING AND COLLECTION USER GUIDE

Field Name Description
Scheduled
Date Use the option set to schedule the payment date.

Proposed By The user who registers the initial payment. This is automatically
filled in by the system.

Below is an example of the Payment Request section:

Next, proceed to insert the necessary details into the Payment Beneficiary
section, as follows:

Field Name Description

Beneficiary
Type

Use the option set to select a beneficiary type for the payment.
The types are as follows:

 l insured

 l contractor

 l policyBeneficiary

 l broker

 l serviceProvider

 l other

TABLE OF CONTENTS 69

BILLING AND COLLECTION USER GUIDE

Field Name Description

Beneficiary
Category

Use the option set to select a beneficiary category for the
payment. The categories are as follows:

 l Other

 l Individual Person

 l Legal Person

Name The name of the payment beneficiary.
IBAN The IBAN of the beneficiary.

Bank This is the bank of the outgoing payment beneficiary. It is
automatically filled in, based on the IBAN number provided.

Below is an example of the Payment Beneficiary section:

If not auto-filled, proceed to insert the necessary details into the Payer
Details section, as follows:

Field Name Description

Name The name of the payer - that is your company. This is
automatically filled in by the system.

IBAN The IBAN of the payer. This is automatically filled in by the
system.

Bank The bank of the payer. This is automatically filled in by the
system.

Comments This area is for comments. Insert details relevant for the user
that is going to approve your request for payment.

Below is an example of the Payer Details section:

TABLE OF CONTENTS 70

BILLING AND COLLECTION USER GUIDE

If you press Save and close before completing the flow (submitting your
request), the record is saved in Draft status and you can come back at it, at a
later date.

Below, you can see an outgoing payment request in Draft status.

To complete the flow, proceed to the next step.

3. Submit Your Outgoing Payment Proposal

TABLE OF CONTENTS 71

BILLING AND COLLECTION USER GUIDE

Once you finished inserting the necessary details, locate the Propose
Payment Return button, at the bottom of the form, and click it to submit
your request to the outgoing payments flow.

After pressing Propose Payment Return, you can see, at the top left of your
screen, that your record is in Proposed status.

Below is an example of an outgoing payment request in Proposed status.

Click Save & Close at the top right of your screen.

HINT
 You can easily find your Draft payment request in the Outgoing Payment Requests
List page, at a later date. If needed, use the Search by Status option to find your
record.

Returning Payments
There are cases when you need to return the payment back to the payer. For example
when you cannot allocate the amount because the payment details are missing - such
as providing the correct unique identifier for the installment or the number of the

TABLE OF CONTENTS 72

BILLING AND COLLECTION USER GUIDE

policy. Yet another example is when you cannot allocate the whole amount of the
incoming payment and need to return the rest.

IMPORTANT! The system does not allow you to return payments that are in
Closed status (in other words, payments that were fully allocated, already). You can
make returns for payments in Unallocated or Partially Allocated status only.

Unallocated Payments can be either handled by the system, automatically or
managed manually, by you. For the automatic return, the FTOS_PYMT_Payment_
ReturnUnallocatedAmount job creates payment returns for all payments which are in
Unallocated status for a number of days that you can configure. For more details,
consult the Flow Parameters and Scheduled Jobs page. For the manual return, you use
the Return button to initiate the return flow by yourself. More details to follow.

Partially Allocated Payments, however, need to be managed only manually. That is:
for each partially allocated payment, you need to initiate the return flow by yourself.
You can do this easily by pressing the Return button inside the selected payment
record.

For returning payments, take the below steps:

1. Find Your Record and Launch the Return Flow

 1. At the top left corner of your FintechOS Portal, click the main menu
icon to open the main dropdown list.

 2. From the main list, click Billing and Collection. A second dropdown
opens.

 3. Next, click Unallocated Payments to go to the Unallocated Payments
List.

 4. Inside the Unallocated Payments List page, use the search
functionality to find the desired payment record.

 5. Double click the record to open it. Or click the Return button next to it,
right away. (If you choose to do so, jump to the Fill in the Return
Details step, below.)

Below is an example of the Unallocated Payments List page, with the
Return button next to the records.

TABLE OF CONTENTS 73

BILLING AND COLLECTION USER GUIDE

 6. Once the record is opened, inside the header section, locate the Return
button and click it.

Below is an example of a payment record in Partially Allocated status,
with Return button.

Proceed to the next step.

2. Fill in the Return Details
When you press Return, you create a request for payment, in Draft status.
Inside the Unallocated Payment record, scroll down to the Outgoing
Payments section and double-click on the Draft request to open it.

Below, you can see the bottom section of a payment record with one
outgoing payment request in Draft status.

TABLE OF CONTENTS 74

BILLING AND COLLECTION USER GUIDE

When you open the Outgoing Payment Request form, you can see all the
details of the Draft request that the system automatically fills in - into the
Payment Request, Payment Beneficiary, and Payer Details sections. These
details are not editable.

Field Name Description
Payment No The number of the incoming payment.
Created On The day when the Outgoing Payment Draft request is created.
Payment
Amount The amount to be returned. It is automatically calculated.

Currency It matches the currency of the incoming payment.

Reference No
The reference number for the outgoing payment. It is
automatically generated to match the number of the incoming
payment.

Payment
Type

It matches the payment type of the incoming payment. The
outgoing payment types are as follows:

 l paymentOrder

 l brokerPremiumPayment

 l paymentUnallocated - this is your current case

 l bankCharges

 l outgoingPayment

Proposed By The user who registers the initial payment.

Bank In the Payment Beneficiary section, it is the bank that sent the
incoming payment.

Name In the Payer Details section, it is the name of the payer - that is
your company.

IBAN In the Payer Details section, it is the IBAN of the payer.
Bank In the Payer Details section, it is the bank of the payer.

TABLE OF CONTENTS 75

BILLING AND COLLECTION USER GUIDE

Below, you can see an outgoing payment request in Draft status.

Proceed to fill in the necessary details into the following editable fields:

Field Name Description
Payment Due
Date The payment due date.

Scheduled
Date The payment scheduled date.

Beneficiary
Type

The payment beneficiary type. The types are as follows:

 l insured

 l contractor

 l policyBeneficiary

 l broker

 l serviceProvider

 l other

TABLE OF CONTENTS 76

BILLING AND COLLECTION USER GUIDE

Field Name Description

Beneficiary
Category

The beneficiary category. The category types are as follows:

 l Other

 l Individual Person

 l Legal Person

Name The name of the payment beneficiary.
IBAN The IBAN of the beneficiary.

Comments Insert details relevant for the user that is going to approve your
request for payment.

Proceed to the next step.

3. Submit your Return Request to Approval
Once finished, press the Propose Payment Return button, at the bottom of
the form, to submit the request to the outgoing payments flow.

After pressing Propose Payment Return, you can see, at the top left of your
screen, that your record is in Proposed status. However, if you press Save
and close before this step (submitting your request), the record is saved in
Draft status and you can come back at it, at a later date. Below is an example
of an outgoing payment request in Proposed status.

TABLE OF CONTENTS 77

BILLING AND COLLECTION USER GUIDE

The next step of this flow is the Approval of the request. If you have the
necessary security role to do the approval, you can continue with the
Outgoing Payment Request flow. If so, consult the Outgoing Payment
Requests page for more details about approval. If not so, you can leave the
record as such, in the Proposed status.

Click Save & Close at the top right of your screen.

HINT
You can easily find your Draft payment request in the Outgoing Payment Requests
List page, at a later date. If needed, use the Search by Status option to find your
record.

Direct Debit
Once the policyholder agreed to pay the premiums by direct debit, the insurer
initiates a direct debit activation procedure in order to notify the bank about the
payment arrangement. After the mandate is activated by the bank, the insurer must
regularly send the necessary payment instructions files, in order for the bank to
respond by transferring the agreed premium amounts into insurer's accounts. When
the system receives a notification about the cancellation of a mandate, it changes the
status of the specified mandate from Active to Cancelled, and logs this change into
the mandate history.

The Billing and Collection solution helps SEPA* and UK insurers to handle direct debit
payment operations - starting with the direct debit mandate activation procedure (in
order to notify the bank about the payment arrangement between insurer and
insured) up to the moment the payment is collected. Find out more on the Direct
Debit SEPA* and Direct Debit UK pages. Both direct debit flows are fully automated.
For example, for direct debit payments that respect some rules (such as providing the
correct payment details, having an active mandate, and a bank account available for
charging), the process of billing and collecting is completely automated, and the
insurer does not need to intervene at all. Second to that, some functionalities allow
manual interaction, and you can read about those features on the Debit SEPA* and
Direct Debit UK pages.

TABLE OF CONTENTS 78

BILLING AND COLLECTION USER GUIDE

Below, an example of a mandate activated automatically, by the solution:

IMPORTANT!
The solution does not allow for any direct debit mandate to be manually deleted.

To find out more details about how the solution works, check the following pages:

 l Direct Debit SEPA - for business details about the SEPA* flow.

 l Direct Debit UK - for business details about the UK flow.

 l SEPA Direct Debit - for technical details about the SEPA* flow.

 l UK Direct Debit - for technical details about the UK flow.

 l Flow Parameters And Scheduled Jobs - for details about the automated jobs
handling the direct debit processing.

*Single Euro Payments Area (SEPA) allows customers to make cashless euro
payments – via credit transfer and direct debit – to anywhere in the European Union.

Setting The Solution For DIDE Processing

1. Choose A DIDE Type

TABLE OF CONTENTS 79

BILLING AND COLLECTION USER GUIDE

The Billing and Collection solution can be applied for two types of direct
debit processing:

 l DIDE Sepa - functionality used for the European area,

 l DIDE UK - functionality used for the UK area.

For activating your direct debit functionality, you must first choose a direct
debit type - either Sepa or Uk. In order to do so, please take one of the
following paths:

In Innovation Studio - Digital Experience > Digital Journeys > Processor
Settings > Digital Flow Settings List > FTOS_PYMT_DIDEConfiguration > Edit
Digital Flow Settings > FTOS_PYMT_DIDEProcessor > Edit Processor Settings:
Insert the value for the flow you need to implement - either Sepa or Uk.

In your Portal - Main menu > Settings > Flow Settings > Digital Flow Settings
List > FTOS_PYMT_DIDEConfiguration > Edit Digital Flow Settings > FTOS_
PYMT_DIDEProcessor > Edit Processor Settings: Insert the value for the flow
you need to implement - either Sepa or Uk.

If the option configured in the processor is Sepa, the Billing and Collection
solution takes in consideration the functionality implemented for DIDE Sepa.
Otherwise, if the inserted value is Uk, the solution takes into consideration
the flow implemented for DIDE UK.

2. Prerequisites Parameters Check
The following parameters must be filled in, according to your needs:

 l numberOfDaysInAdvance: numeric value expected,

 l runningOnBankHolidays: boolean value expected,

 l excludeWeekDays: [text value expected, ...].

More about these parameters, on the Flow Parameters And Scheduled Jobs
page.

3. Insert UK Specific Default Values

TABLE OF CONTENTS 80

BILLING AND COLLECTION USER GUIDE

This step is only applicable when you are configuring the direct debit
functionality for UK.

The following are the available processors:

DIDEPaymentsFileDefaultValues
This processor sets the value for the DIDEUK_Instructions job that
collects all the Draft mandates and sends instructions for their
activation to BACS.

The following parameters must be filled in, according to your needs:

 l destinationSort: numeric value expected,

 l destinationAcct: numeric value expected,

 l destinationType: 0,

 l usersName: text value expected

DIDEPaymentsFileDefaultValuesUk
This processor sets the value for the FTOS_PYMT_
DIDEInstructionFile job that, for the active mandates registered in
the system, assembles the file containing the direct debit payment
instructions that are delivered to BACS, and then to the payer's
bank.

The following parameters must be filled in, according to your needs:

 l destinationSort: numeric value expected,

 l destinationAcct: numeric value expected,

 l destinationType: 0,

 l transaction: string value expected,

 l freeFormat: numeric value expected,

TABLE OF CONTENTS 81

BILLING AND COLLECTION USER GUIDE

 l amount: numeric value expected,

 l usersName: text value expected.

For more details about the jobs and parameters, check the Flow Parameters
And Scheduled Jobs page.

The direct debit functionalities can be applied to policies that have the payment type
set to Direct Debit, and their business status is in InForce or Suspended. The solution
is going to process all the invoices that are in Generated business status - with their
due date less or equal to the current date, added to the value set in the
numberOfDaysInAdvance parameter.

Direct Debit Business Workflow
FTOS_PYMT_DirectDebitMandate is the master business workflow that handles the
different types of changes affecting a direct debit mandate during its lifetime - like
transitioning the mandate through different versions and business states (from Draft
to Expired). All the updates are logged in the mandate history tab, for further
analytical use.

Below, an example of the FTOS_PYMT_DirectDebitMandate business workflow - as it
is displayed on Innovation Studio:

TABLE OF CONTENTS 82

BILLING AND COLLECTION USER GUIDE

Mandate Behavior
The following are the behaviors - characteristic to any mandate, managed by
this business workflow:

 l Every mandate (or mandate version) starts in Draft status and must go
through an approval process before reaching the Active status.
Approval is automatic, based on bank response.

 l Once a mandate is in Active status, its settings can no longer be
modified.

 l If you want to manually update an Active mandate, you must create a
new mandate version. After editing, you must manually approve the
new mandate version; use the status picker to pick the Approved
status.

 l When you create a new mandate version, the current version is retired.

 l Only one version of a mandate can be live at one time.

 l Only one draft version can be active at one time. If the case, you must
close the current draft version and then, open another one.

 l Mandates in Cancelled status cannot be edited (versioned) - by you or
the system.

 l No mandate can be deleted manually from the system.

 l The system also can automatically adjust a mandate, based on
mandate data received. All adjustments are automatically integrated
into a new version of the mandate, and logged into the mandate
history.

Mandate Stages
A direct debit mandate stage can take one of the following values:

 l N (new),

 l D (deleted, cancelled), or

 l M (modified).

TABLE OF CONTENTS 83

BILLING AND COLLECTION USER GUIDE

These stages are registered by the solution, following the processing of
payment files/ payment data. For example, if a request for payment through
an active mandate is denied (a number of times, which you can configure),
this is picked out and sorted by the system, and the mandate is transitioned
to the Deleted stage. The system also automatically logs this update on the
relevant mandate record (this is done by creating an actualized version of the
mandate).

Mandate States
Status name Description
Proposal Initial state for any mandate registered in the system.
Draft Initial state for any mandate registered in the system.

Pending Ongoing state - the mandate is pending approval from the
bank.

Active Ongoing state.
Version Draft When the selected mandate becomes editable.
Version
Unapproved When a draft version of a mandate is canceled.

Approved Ongoing state.
Version Closed When a draft version of a mandate is closed.

Expired Final state. The mandate is expired. The mandate cannot be
moved from this state to any other states.

Cancelled Final state. The mandate is cancelled. The mandate cannot be
edited or moved from this state to any other states.

Mandate State Transitions
Transition Description
_Proposal Initial state.

Active_Cancelled
When the system registers a
notification about the mandate
cancellation.

Active_Expired

When the mandate reaches its end
day. The expiration triggers the
automatic change of the payment type
on the policy, from Direct Debit to
Bank Transfer (OP).

Active_VersionClosed When a version of the mandate is
closed. Used for mandate versioning.

TABLE OF CONTENTS 84

BILLING AND COLLECTION USER GUIDE

Transition Description

Approved_Active When the mandate reaches its start
day.

Approved_Draft
When a change of the policy payment
type from Bank Transfer (OP) into
Direct Debit is performed on a policy.

Approved_Expired
When the number of days for the
activation of a mandate were
exhausted.

Cancelled_Active
When a mandate is reactivated. This
status is only visible/ available for
DIDE UK processing.

Draft_Active

When the mandate reaches its start
day.
This transition is triggered
automatically by a specific job that
verifies if the current date is the
mandate begin date and changes the
status to Active for all eligible
mandates.

Draft_Cancelled
When the system registers a
notification about the mandate
cancellation.

Draft_Expired

When the number of days for the
activation of a mandate were
exhausted. The expiration triggers the
automatic change of the payment type
on the policy, from Direct Debit to
Bank Transfer (OP).

Draft_Pending

After the instruction file for the
mandate's activation is generated, and
the mandate is pending approval from
the bank.

Draft_VersionDraft When the mandate versioning process
starts.

Pending_Active When the mandate reaches its start
day.

Pending_Cancelled

When the system registers a
notification (e.g. AUDDIS file) about
canceling the mandate, or a user
manually cancels the mandate.

TABLE OF CONTENTS 85

BILLING AND COLLECTION USER GUIDE

Transition Description

Proposal_Active When the mandate reaches its start
day.

Proposal_Draft
When the mandate is registered in the
system but it is not activated yet, or its
begin date is yet to come.

Proposal_Expired
When the number of days for the
activation of a draft mandate were
exhausted.

VersionDraft_Approved
When a version of the mandate is
approved. Used for mandate
versioning.

VersionDraft_VersionUnapproved
When the opened version is not
approved. Used for mandate
versioning.

HINT
For more details, consult also the Flow Parameters And Scheduled Jobs page.

Direct Debit SEPA

The Billing and Collection solution helps SEPA* insurers to handle direct debit
payment operations - starting with the direct debit activation procedure (in order to
notify the bank about the payment arrangement between insurer and insured) up to
the moment the payment is collected.

IMPORTANT!
Follow the steps detailed in the Direct Debit page, for setting the solution to perform
direct debit processing for SEPA* area.

TABLE OF CONTENTS 86

BILLING AND COLLECTION USER GUIDE

For direct debit payments that respect some rules (such as providing the correct
payment details), the process or billing and collecting is completely automated, and
you can check the technical details about it on the SEPA Direct Debit page. Details
about the automated jobs handling the direct debit payments can be found on the
Flow Parameters And Scheduled Jobs page.

Below is an example of a mandate activated automatically, by the Billing and
Collection solution:

IMPORTANT!
The direct debit mandates cannot be deleted manually.

*Single Euro Payments Area (SEPA) allows customers to make cashless euro
payments – via credit transfer and direct debit – to anywhere in the European Union.

Direct Debit Mandates View
In your portal, the Direct Debit Mandates section offers you an overview of
the SEPA direct debit mandates registered in your system - with the newest
activated mandate at the top.

This view is permanently updating since many of the files are generated by
the system, based on available connections with other third-party systems
that feed different kinds of direct debit data into the Billing and Collection

TABLE OF CONTENTS 87

BILLING AND COLLECTION USER GUIDE

solution, and also based on different scheduled jobs that automate direct
debit processing. Second to that, some functionalities allow manual
interaction. Scroll down to the External Reports section, for more details.

This list also gives you the possibility to search and sort the mandates for
easier processing. For example if you want to view all the mandates in Active
status - that is mandates from which premiums are paid, you can use the
Search by Status option and sort all your mandates accordingly.

Follow the steps below to view the SEPA direct debit mandates registered
into your system:

 1. In your FintechOS Portal, navigate down the main menu of the Billing
and Collection solution.

 2. From the dropdown list, click Direct Debit Mandates to open the
Direct Debit Mandates list.

On the Direct Debit Mandates page:

 l To inspect a record from the grid, double-click it. The form allows you
to see the direct debit mandate related details and its history, in a
second tab. See details in the next section, below.

 l To add a new mandate, manually, click Insert, at the top right corner of
the page, to open the Insert Mandate Form. See details in the Insert
Mandate section, below.

TABLE OF CONTENTS 88

BILLING AND COLLECTION USER GUIDE

 l To edit a mandate, press Edit Mandate and use the form to make your
adjustments. Editing is available for mandates in Draft, Pending or
Active status. See details in the Edit Mandate section, below.

HINT
You can export one or more records by pressing Export, at the top right
corner of your screen.

SEPA Direct Debit Mandate Form
The SEPA Direct Debit Mandate Form allows you to inspect, edit or cancel a
mandate. The form is organized as follows:

Direct Debit Mandates Tab

Inside this first section, the following fields are automatically
populated with details extracted from the direct debit activation
file, coming from the bank and the related policy. These fields are
not editable.

TABLE OF CONTENTS 89

BILLING AND COLLECTION USER GUIDE

Field Description
Current No. The number of the current mandate.
Payer first
name The first name of the payer.

Payer last name The last name of the payer.

Payer PIN/ UTR The Personal Identification Number or unique ID of
the payer.

Reference The reference for the payments - policy number.
IBAN The IBAN code for the payments.
Currency The currency for the payments.
Bank branch The bank branch.
Amount type The amount type.
Amount The amount of the payment.

Mandate stage The stage of the mandate. The options set values are:
New, Deleted, Modified.

Begin date

The beginning date of the mandate. It is
automatically completed with the current date - the
date when the direct debit Instructions File
(containing the instructions for the current mandate,
also) is generated in the system.

End date The end date of the mandate.

History Tab

TABLE OF CONTENTS 90

BILLING AND COLLECTION USER GUIDE

Inside this section, you can see the history of the direct debit record.
The system makes updates on a direct debit record through the
standard versioning mechanism and logs them in this section,
helping you to keep track of every change. These fields are not
editable.

Edit a Direct Debit Mandate

The versioning functionality allows you to edit a mandate, and all
your updates are logged into the system. After editing, you must
manually approve the new mandate version. See the instructions
below.

IMPORTANT!
Mandates in Cancelled status cannot be edited.

1. Click Edit Mandate to allow the read-only fields to become
editable.

Below , an example of a SEPA mandate ready to be adjusted:

TABLE OF CONTENTS 91

BILLING AND COLLECTION USER GUIDE

However, some fields are still not editable (see the table below).
Proceed to make your changes into the form. Inside this first tab,
the fields are automatically populated with the direct debit record
details. The following fields are available:

Field Description
Current No. The number of the current mandate. Not editable!
Payer first name The first name of the payer.
Payer last name The last name of the payer.

Payer PIN/ UTR The Personal Identification Number or unique ID of
the payer.

Reference The reference for the payments - policy number.
Not editable!

IBAN The IBAN code for the payments.
Currency The currency for the payments. Not editable!
Bank branch The bank branch.
Amount type The amount type.
Amount The amount of the payment.

Mandate stage The stage of the mandate. The options set values
are: New, Deleted, and Modified. Not editable!

Begin date The beginning date of the mandate.
End date The end date of the mandate.

TABLE OF CONTENTS 92

BILLING AND COLLECTION USER GUIDE

2. Use the Status picker, at the top left of the form, to approve your
changes.

Below is an example of a SEPA mandate History tab and the Status
picker (actually available on both tabs of the form):

3. Once approved, the History tab opens and you can check the
logging of the version you recently created on the selected direct
debit mandate.

4. Click Save and close.

Cancel a Direct Debit Mandate

TABLE OF CONTENTS 93

BILLING AND COLLECTION USER GUIDE

IMPORTANT!
Canceling a mandate triggers the cancellation of all its
correlated invoices - that are in Generated status.

Follow the steps below, to cancel a mandate:

1. Click Cancel mandate to move the mandate into this final state.

NOTE
Cancellation is irreversible and the mandate cannot be edited
after this step.

2. Once cancelled, the History tab opens and you can check the
logging of this final adjustment you made on the mandate.

Below is an example of the History tab of a cancelled SEPA mandate:

TABLE OF CONTENTS 94

BILLING AND COLLECTION USER GUIDE

3. Click Save and close.

Insert SEPA Mandate Form
Even if rare, there are cases when you need to manually insert a mandate, on
behalf of a customer. For this, you use the Insert Mandate Form. All
mandates inserted manually are registered in Draft status, with
mandateStage =N (new) and Begin Date = null. Next, for all the mandates -
SEPA and UK, registered in the system, the FTOS_PYMT_
DirectDebitMandateStatus scheduled job moves the mandate in Active
status, based on some rules. More on the SEPA Direct Debit page.

IMPORTANT!
Manually, you can only add mandates with the mandate stage set to New.
Additionally, a system validation is in place that prevents you from adding
a mandate with the same reference (policy number) as any other
mandate already existing in the system.

Below is an example of an Insert Mandate Form:

TABLE OF CONTENTS 95

BILLING AND COLLECTION USER GUIDE

Follow the steps below to add a mandate:

 1. In your FintechOS Portal, navigate down the main menu of the Billing
and Collection solution.

 2. From the dropdown list, click Direct Debit Mandates to open the
Direct Debit Mandates list.

 3. On the Direct Debit Mandates page, click Insert, at the top right corner
of the page, to open the Insert Mandate Form.

 4. Proceed to insert the necessary details into the form, as follows:

Field Description

Current No. The number of the mandate. Not editable! Automatically
generated by the system (unique number).

Payer first name The first name of the payer.
Payer last name The last name of the payer.

Payer PIN/ UTR The Personal Identification Number or unique ID of the
payer.

Reference The reference for the payments - policy number. Not
editable!

IBAN The IBAN code for the payments.
Currency Choose from the dropdown the currency for the payments.
Bank branch The bank branch.

TABLE OF CONTENTS 96

BILLING AND COLLECTION USER GUIDE

Field Description

Amount type The amount type. String values: M (maximum amount) or F
(fixed amount).

Amount The amount of the payment (with 2 decimals).

Mandate stage The stage of the mandate. By default completed with N
(new). Not editable!

Begin date When the direct debit process should start.
End date When the direct debit process should end.

5. Click Save and close.

External Reports

The External Reports hold details referring to the management of direct debit
mandates - the notifications sent by the bank regarding the activation of the mandate
and also about its status (such as if the mandate is still active), the instruction files
containing the payment requests for the selected installments, the details regarding
the success or failure of the direct debit transactions, and more.

In the External Reports section, you can search inside the repositories by File or
Import Date. You can inspect a record by double-clicking it.

IMPORTANT!
The bulk of handling of these operations is done through automatic flows. Where
file insert is possible, you will find an Insert button. Uploading direct debit data into
the system, triggers automatic changes and tracking of those changes. Updates are
made and logged for every record through FintechOS standard versioning
mechanism.

Inside External Reports, the following sections are available:

Direct Debit Notification Section

TABLE OF CONTENTS 97

BILLING AND COLLECTION USER GUIDE

The Direct Debit Notifications sections displays all the files that contain
notifications about changes made on the direct debit mandates registered
on the system. A notified mandate is a mandate that received an update.

This section is permanently updating since many of the updates are
generated by the system, also, based on different scheduled jobs that
automate direct debit processing. For example if a request for payment
through an active mandate is denied (a number of times), the system
changes the status of the mandate to Deleted.

NOTE
In this section, file import is possible. You can use this functionality to bulk
upload notifications (updates) about the existing mandates. A Direct Debit
Notification file must have .csv or .txt format in order to be processed and
stored by the system.

There are also cases when you need to manually modify some details existing
on mandate in Active status - for example, the policyholder's account
number has changed and there is a business request to update the mandate

TABLE OF CONTENTS 98

BILLING AND COLLECTION USER GUIDE

urgently, instead of waiting for the automated jobs to handle the change.
You can do this by importing a direct debit notification file with M (modified)
type.

Follow the steps below in order to manually import a Direct Debit
Notification file:

Import File Instructions
Below is an example of an Import Form:

1. While in the same section, click Insert, at the top right corner of
your screen.

2. When the Import Form opens, click on the Select File button and
insert your Direct Debit Notification File and then click Import Data.

IMPORTANT!
You must import an M type direct debit Notification File in
order to modify an Active mandate.

3. (Optional) Check the tabs of the record, for further details. See
also the next paragraph that explains how the record is organized.

4. Click Save and close.

Inside any Direct Debit Notification record, the details about the notified
mandate are organized as follows:

TABLE OF CONTENTS 99

BILLING AND COLLECTION USER GUIDE

 l The Notification File tab - This first tab includes the actual File with the
notification for payment and the auto-populated Import Date field.

 l The Direct Debit Mandate tab - This second tab includes a View
Mandate button which allows you to visualize the actual mandate
record.

DIDE Payments Instruction Files Section

NOTE
All the details from this section are automatically filled in by the system
and they are not editable.

A direct debit job runs daily in the system, verifying all the policies with
direct debit payment type and their payment schedules, for all the insurance
products that are in Active status. Where the case, for all the qualifying

TABLE OF CONTENTS 100

BILLING AND COLLECTION USER GUIDE

installments, this job generates invoices and automatically sends to the bank
a request for payment in form of a direct debit instruction file containing the
invoice details.

The Direct Debit Payment Instruction Files section hosts all your files
containing the instructions for direct debit payments generated by the
system. You can search inside this repository by File or Date of Generation.
You can inspect a record by double-clicking it. If you want to inspect the
details inside any Direct Debit Payment Instruction File, you must download
the file.

DIDE Payment Confirmations Section

NOTE
In this section, file import is possible. A DIDE Payment Confirmations File
must have .txt format in order to be processed and stored by the system.

TABLE OF CONTENTS 101

BILLING AND COLLECTION USER GUIDE

The DIDE Payment Confirmations section contains details about all the direct
debit payments confirmed in the system. This section is permanently
updating since many of the files are generated by the system, based on
different scheduled jobs that automate direct debit processing.

You can search inside this repository by File or Import Date. You can inspect
a record by double-clicking it. If necessary, you can manually import a DIDE
Payment Confirmations file. See right below:

Import File Instructions
Below is an example of an Import Form:

1. While in the same section, click Insert, at the top right corner of
your screen.

2. When the Import Form opens, select your file and then click
Import Data.

TABLE OF CONTENTS 102

BILLING AND COLLECTION USER GUIDE

3. (Optional) Check the tabs of the record, for further details. See
also the next paragraph that explains how the record is organized.

4. Click Save and close.

Inside any Direct Debit Confirmation record, the details about the confirmed
payment are organized as follows:

The first tab - includes the actual File with the confirmation of a payment for
a specific mandate and the auto-populated Import Date field.

The second tab - includes a grid containing every denied payment extracted
from the imported file. For the case when there are many records listed, you
also can search inside this grid by different keywords - such as Payment no,
Payment date, Paid amount, Currency, or Consumer code.

Direct Debit Denied Section

TABLE OF CONTENTS 103

BILLING AND COLLECTION USER GUIDE

NOTE
In this section, file import is possible. A Direct Debit Denied must have
 .csv or .txt format in order to be processed and stored by the system.

The Direct Debit Denied section contains details about all the requests for
direct debit payment that were denied by the bank and are registered into
your system. This section is permanently updating since many of the files are
generated by the system, based on different scheduled jobs that automate
direct debit processing.

You can search inside this repository by File or Import Date. You can inspect
a record by double-clicking it. If necessary, you can manually import a Direct
Debit Denied file. See right below:

Import File Instructions
Below is an example of an Import Form:

TABLE OF CONTENTS 104

BILLING AND COLLECTION USER GUIDE

1. While in the same section, click Insert, at the top right corner of
your screen.

2. When the Import Form opens, select your file and then click
Import Data.

3. (Optional) Check the tabs of the record, for further details. See
also the next paragraph that explains how the record is organized.

4. Click Save and close.

Inside any Direct Debit Denied record, the details about the denied payment
are organized as follows:

The first tab - includes the actual File with the details of the denied request
for direct debit payment for a specific mandate, from the bank and the auto-
populated Import Date field.

The second tab - includes a grid containing every denied payment extracted
from the imported file. For the case when there are many records listed, you
also can search inside this grid by different keywords - such as Payment no.,
Order number, Operation date, or Payment amount.

HINT
For more information about the import rules and configurations, consult also the
Direct Debit and the Flow Parameters And Scheduled Jobs pages.

TABLE OF CONTENTS 105

BILLING AND COLLECTION USER GUIDE

Direct Debit UK

The Billing and Collection solution helps UK insurers to handle direct debit payment
operations - starting with the direct debit mandate activation procedure (in order to
notify the bank about the payment arrangement between insurer and insured) up to
the moment the payment is collected.

IMPORTANT!
Follow the steps detailed in the Direct Debit page, for setting the solution to perform
direct debit processing for UK area.

For direct debit payments that respect some rules (such as providing the correct
payment details), the process or billing and collecting is completely automated, and
you can check the technical details about it on the UK Direct Debit page. Details about
the automated jobs handling the direct debit processing can also be found on the
Flow Parameters And Scheduled Jobs page.

The following is a diagram of how the Billing and Collection solution handles the
processing of direct debit payments for the UK area.

TABLE OF CONTENTS 106

BILLING AND COLLECTION USER GUIDE

Below is an example of a mandate activated automatically, by the Billing and
Collection solution:

NOTE
The direct debit mandates cannot be deleted manually.

Direct Debit Mandates View
In your portal, the Direct Debit Mandates section offers you an overview of
the UK direct debit mandates registered in your system - with the newest
activated mandate at the top.

This view is permanently updating since many of the files are generated by
the system, based on available connections with other third-party systems
that feed different kinds of direct debit data into the Billing and Collection
solution, and also based on different scheduled jobs that automate direct
debit processing. Second to that, some functionalities allow manual
interaction. Scroll down to the Direct Debit UK Functionalities section, for
more details.

TABLE OF CONTENTS 107

BILLING AND COLLECTION USER GUIDE

This list also gives you the possibility to search and sort the mandates for
easier processing. For example if you want to view all the mandates in Active
status - that is mandates from which premiums are paid, you can use the
Search by Status option and sort all your mandates accordingly.

Follow the steps below to view the UK direct debit mandates registered into
your system:

 1. In your FintechOS Portal, navigate down the main menu of the Billing
and Collection solution.

 2. From the dropdown list, click Direct Debit Mandates to open the
Direct Debit Mandates list.

On the Direct Debit Mandates page:

 l To inspect a record from the grid, double-click it. The form allows you
to see the direct debit mandate related details and its history, in a
second tab. See details in the next section, below.

 l To add a new mandate, manually, click Insert, at the top right corner of
the page, to open the Insert Mandate Form. See details in the Insert
Mandate section, below.

 l To edit a mandate, press Edit Mandate and use the form to make your
adjustments. Editing is available for mandates in Draft, Pending or
Active status. See details in the Edit Mandate section, below.

TABLE OF CONTENTS 108

BILLING AND COLLECTION USER GUIDE

HINT
You can export one or more records by pressing Export, at the top right
corner of your screen.

UK Direct Debit Mandate Form
The UK Direct Debit Mandate Form allows you to inspect, edit or cancel a
mandate. The form is organized as follows:

Direct Debit Mandates Tab

Inside this first section, the following fields are automatically
populated with details extracted from the direct debit activation
file, coming from the bank and the related policy. These fields are
not editable.

Field Description
Account Holder The name of the payer.
Bank Sort Code The bank sort code.
Account
Number The account number used for direct debit payments.

Begin date

The beginning date of the mandate. It is
automatically completed with the current date - the
date when the direct debit Instructions File
(containing the instructions for the current mandate,
also) is generated in the system.

Reference The reference for the payments - policy number.

History Tab

TABLE OF CONTENTS 109

BILLING AND COLLECTION USER GUIDE

Inside this section, you can see the history of the direct debit record.
The system makes updates on a direct debit record through the
standard versioning mechanism and logs them in this section,
helping you to keep track of every change. These fields are not
editable.

Edit a UK Direct Debit Mandate

The versioning functionality allows you to edit a mandate, and all
your updates are logged into the system. After editing, you must
manually approve the new mandate version. See the instructions
below.

IMPORTANT!
Mandates in Cancelled status cannot be edited.

TABLE OF CONTENTS 110

BILLING AND COLLECTION USER GUIDE

1. Click Edit Mandate to allow the read-only fields to become
editable.

Below, an example of a UK mandate ready to be adjusted:

However, some fields are still not editable (see the table below).
Proceed to make your changes into the form. Inside this first tab,
the fields are automatically populated with the direct debit record
details. The following fields are available:

Field Description
Account Holder The name of the payer, account holder.
Bank Sort Code The bank sort code.
Account Number The account number of the payer.

Begin date The beginning date of the mandate. Not
editable!

Reference The reference for the payments - policy number.
Not editable!

2. Use the Status picker, at the top left of the form, to approve your
changes.

Below is an example of a UK mandate History tab and the Status
picker (actually available on both tabs of the form):

TABLE OF CONTENTS 111

BILLING AND COLLECTION USER GUIDE

3. Once approved, the History tab opens and you can check the
logging of the version you recently created on the selected direct
debit mandate.

4. Click Save and close.

Cancel a Direct Debit Mandate

IMPORTANT!
Canceling a mandate triggers the cancellation of all its
correlated invoices - that are either in Generated or in OnGrace
status.

Follow the steps below, to cancel a mandate:

1. Click Cancel mandate to move the mandate into this final state.

TABLE OF CONTENTS 112

BILLING AND COLLECTION USER GUIDE

NOTE
Cancellation is irreversible and the mandate cannot be edited
after this step.

2. Once cancelled, the History tab opens and you can check the
logging of this final adjustment you made on the mandate.

Below is an example of the History tab of a cancelled UK mandate:

3. Click Save and close.

Insert UK Mandate Form
Even if rare, there are cases when you need to manually insert a mandate, on
behalf of a customer. For this, you use the Insert Mandate Form. All
mandates inserted manually are registered in Draft status, with
mandateStage =N (new) and Begin Date = null. Next, for all the mandates -
SEPA and UK, registered in the system, the FTOS_PYMT_
DirectDebitMandateStatus scheduled job moves the mandate in Active
status, based on some rules. More on the UK Direct Debit page.

IMPORTANT!
You can only add mandates with the mandate stage set to New.
Additionally, a system validation is in place that prevents you from adding

TABLE OF CONTENTS 113

BILLING AND COLLECTION USER GUIDE

a mandate with the same reference (policy number) as any other
mandate already existing in the system.

Below is an example of an Insert Mandate Form:

Follow the steps below to add a mandate:

 1. In your FintechOS Portal, navigate down the main menu of the Billing
and Collection solution.

 2. From the dropdown list, click Direct Debit Mandates to open the
Direct Debit Mandates list.

 3. On the Direct Debit Mandates page, click Insert, at the top right corner
of the page, to open the Insert Mandate Form.

 4. Proceed to insert the necessary details into the form, as follows:

Field Description
Account Holder The name of the payer, account holder.
Bank Sort Code The bank sort code.
Account Number The account number of the payer.
Begin date The beginning date of the mandate. Not editable!
Reference The reference for the payments - policy number.

5. Click Save and close.

TABLE OF CONTENTS 114

BILLING AND COLLECTION USER GUIDE

Direct Debit UK Functionalities

In order to accommodate the differences regarding the direct debit payments, the
Billing and Collection solution has dedicated workflows for the Single Euro Payments
Area (SEPA) and for the UK financial area. Each flow has different menu items that
display their respective functionalities and help you to handle direct debit payments
processing according to SEPA or UK regulations.

Read below about the different functionalities that are part of the UK direct debit
flow.

IMPORTANT!
The bulk of handling of these operations is done through automatic flows. Where
file insert is possible, you will find an Insert button. Uploading direct debit data into
the system, triggers automatic changes and tracking of those changes. Updates are
made and logged for every record through FintechOS standard versioning
mechanism.

The following sections are available:

DIDE Payments Instruction Files Section

NOTE
All the details from this section are automatically filled in by the system
and they are not editable.

A direct debit job runs daily in the system, verifying all the policies with
direct debit payment type and their payment schedules, for all the insurance
products that are in Active status. Where the case, for all the qualifying
installments, this job generates invoices and automatically sends to the bank
a request for payment in form of a direct debit instruction file containing the
invoice details.

TABLE OF CONTENTS 115

BILLING AND COLLECTION USER GUIDE

The Direct Debit Payment Instruction Files section hosts all your files
containing the instructions for direct debit payments generated by the
system. You can search inside this repository by File or Date of Generation.
You can inspect a record by double-clicking it. If you want to inspect the
details inside any Direct Debit Payment Instruction File, you must download
the file.

ADDACS Files Section

HINT
The ADDACS report (file) contains data that impact the status of the UK
Direct Debit Mandates.

ADDACS Report Description
Once a Direct Debit Instruction (Mandate) has been set up, it might
change.

TABLE OF CONTENTS 116

BILLING AND COLLECTION USER GUIDE

When it does, the Paying Bank reports the change to BACS (Bankers
Automated Clearing Service). BACS generates an ADDACS
(Automated Direct Debit Amendment and Cancellation Service)
report about the changes that were made and sends it to the
insurer.

The following are the Reasons which can be received in the ADDACS
file, and the corresponding behavior of the Billing and Collection
solution:

Code Mention

0
Instruction cancelled refer to Payer.
If this reason is received, then the mandate status is changed
to Cancelled.

1
Instruction cancelled by Payer.
If this reason is received, then the mandate status is changed
to Cancelled.

2
Payer deceased.
If this reason is received, then the mandate status is changed
to Cancelled.

3
Account transferred to a new Bank or Building Society
If this reason is received, then the mandate status is changed
to Cancelled.

B
Account closed.
If this reason is received, then the mandate status is changed
to Cancelled.

C

Account/ Instruction transferred to a different branch of
Bank/ Building Society.
If this reason is received, then the mandate status is changed
to Cancelled.

D Advance notice disputed.
If this reason is received, then no action is taken.

E Instruction amended.
If this reason is received, then update the mandate.

R Instruction re-instated.
If this reason is received, then reactivate the mandate.

NOTE
An ADDACS report (file) is produced whenever a change is

TABLE OF CONTENTS 117

BILLING AND COLLECTION USER GUIDE

made to the details of an existing Direct Debit Instruction
(Mandate).

It is critically important that the correct action is taken in response
to an ADDACS report as this will enable the insurer to continue to
receive payments. These updates should be acted upon within 3
days of receipt. It is in the best interest of insurers to act quickly on
receipt of an ADDACS report, otherwise, it can be risky making
incorrect collections and facing indemnity claims, loss of revenue,
and damage to organization’s reputation as offering poor customer
service.

ADDACS files are emitted by the BACS (Bankers Automated Clearing
Service) payment network, the most popular method for sending
and receiving business payments in the UK.

The ADDACS Files section contains all the ADDACS files ever imported in the
system. The mandates can be accessed from the ADDACS Mandates Grid
even if their effective date is in the future. You can search inside this
repository by File or Import Date. You can inspect a record by double-clicking
it.

TABLE OF CONTENTS 118

BILLING AND COLLECTION USER GUIDE

NOTE
In this section, file import is possible and you use this functionality to
upload ADDACS reports (files) about the existing mandates, whenever you
receive them. A file must have .csv or .txt format in order to be processed
and stored by the system.

Follow the steps below in order to manually import an ADDACS report. See
right below:

Import File Instructions
Below is an example of an Import Form:

1. While in the same section, click Insert, at the top right corner of
your screen.

2. When the Import Form opens, select your file and then click
Import Data.

3. (Optional) Check the second tab of the record, for further details.
When you upload an ADDACS file, the system automatically parses
the data and displays the findings in the second tab of the ADDACS
record. See also the next paragraph that explains how the record is
organized.

4. Click Save and close.

Inside any ADDACS report record, the details about the notified mandates
are organized as follows:

TABLE OF CONTENTS 119

BILLING AND COLLECTION USER GUIDE

 l The ADDACS File tab - This first tab includes the actual File with the
notification (or notifications) for the mandates existing in your system.
The Import Date field is completed automatically.

Below is an example of the first tab for an ADDACS record:

 l The Direct Debit Mandates tab - This second tab includes a View
Mandate button which allows you to visualize the actual mandate
record that was updated. When an ADDACS record cancels more than
one mandate, the record points to all those mandates that have the
reference specified in the ADDACS file. Accordingly, this form displays
all the mandates, in the grid, with view buttons next to every one.

Below is an example of the second tab for an ADDACS record, which
informs about different status changes for multiple mandates:

TABLE OF CONTENTS 120

BILLING AND COLLECTION USER GUIDE

ARUDD Unconfirmed Payments Section

HINT
The ARUDD report (file) contains data that impact the status of the
payments for an UK Direct Debit Mandate.

ARUDD Report Description
Once a Direct Debit Instruction (Mandate) has been set up, it might
fail to deliver payments.

When it does, the Paying Bank reports the change to BACS (Bankers
Automated Clearing Service). BACS generates an ARUDD (Automated
Return of Unpaid Direct Debits) report about the unpaid premiums
and sends it to the insurer.

An ARUDD report (file) is triggered after you have submitted a
payments collection file in an attempt to collect from your Payers. It
becomes available to insurers one day after Direct Debits are due
to be collected. This report contains information about any of the
payments that could not be collected.

NOTE

An ARUDD report (file) is produced whenever a payment failed,
for any of your existing Direct Debit Instructions (Mandates).

ARUDD files are emitted by the BACS (Bankers Automated Clearing
Service) payment network, the most popular method for sending
and receiving business payments in the UK.

TABLE OF CONTENTS 121

BILLING AND COLLECTION USER GUIDE

NOTE
In this section, file import is possible. An ARUDD File must have .txt
format in order to be processed and stored by the system.

The ARUDD Unconfirmed Payments section contains details about all the
unconfirmed direct debit payments, registered in the system.

You can search inside this repository by File or Import Date. You can inspect
a record by double-clicking it. When the case, you can also manually import a
ARUDD file. See right below:

Import File Instructions
Below is an example of an Import Form:

1. While in the same section, click Insert, at the top right corner of
your screen.

TABLE OF CONTENTS 122

BILLING AND COLLECTION USER GUIDE

2. When the Import Form opens, select your file and then click
Import Data.

3. (Optional) Check the tabs of the record, for further details. See
also the next paragraph that explains how the record is organized.

4. Click Save and close.

Inside any ARUDD File record, the details about the unconfirmed payments
are organized as follows:

The first tab - includes the actual File with the unconfirmed payment for a
specific mandate and the auto-populated Import Date field.

The second tab - includes a grid containing every denied payment extracted
from the imported file. For the case when there are many records listed, you
also can search inside this grid by different keywords - such as Reference,
Payment amount, Currency, Payer name, and Sort code.

New DIDE Mandates Instruction File Section

TABLE OF CONTENTS 123

BILLING AND COLLECTION USER GUIDE

NOTE
All the details from this section are automatically filled in by the system
and they are not editable.

For the new direct debit mandate calls, received through the Generate UK
Mandate API, there is a daily job - DIDEUK_Instructions, that is scheduled to
generate mandate activation instructions for the BACS system, compliant
with the BACS standardized .txt file format. This section holds all the files
containing the instructions for the activation of direct debit mandates
generated by Billing and Collection solution. This is where you go to check
how many new mandates were activated.

You can search inside this repository by File name or Date of Generation.
You can inspect a record by double-clicking it.

TABLE OF CONTENTS 124

BILLING AND COLLECTION USER GUIDE

If you want to inspect the details inside a particular mandate activation
request, you must download the file.

AUDDIS Files Section

HINT
The AUDDIS report (file) contains data that impact the status of the
payment collection for an UK Direct Debit Mandate.

AUDDIS Report Description
Once a policyholder agreed to pay the premiums by direct debit, the
insurer must regularly send direct debit payment instructions to
BACS. These instructions might not be accepted (either by BACS or
the Payer’s bank). When this happens, BACS (Bankers Automated
Clearing Service) generates an AUDDIS (Automated Direct Debit
Instruction Service) report about the failed direct debit instruction
for payment and sends it to the insurer.

The following are the Reasons which can be received in the AUDDIS
file:

Reason code Comments
F Invalid account type
1 Instruction cancelled by payer
2 Payer deceased
H Instruction has expired
C Account transferred
I Payer Reference is not unique
B Account closed
L Incorrect payer’s Account Details
5 No account

TABLE OF CONTENTS 125

BILLING AND COLLECTION USER GUIDE

Reason code Comments
K Instruction cancelled by paying bank
6 No Instruction
G Bank will not accept Direct Debits on account

Upon importing an AUDDIS report in the system, the following is the
corresponding behavior of the Billing and Collection solution:

Field Description

Record type No validations, receive the exact value from the
file.

Reference Policy number.
Reason code See related table from above.

Payer’s name No validations, receive the exact value from the
file.

Sort code
Sort code for the initiated mandate.
No validations, receive the exact value from the
file.

Account number

Account number correlated with the initiated
mandate
No validations, receive the exact value from the
file.

A/C type No validations, receive the exact value from the
file.

Original proc date No validations, receive the exact value from the
file.

Effective date

Date when the mandate validation decision has
been made.
No validations, receive the exact value from the
file.

Tran code No validations, receive the exact value from the
file.

Originator sort code
name

No validations, receive the exact value from the
file.

Details account no No validations, receive the exact value from the
file.

Note No validations, receive the exact value from the
file.

ADDACS sequence No validations, receive the exact value from the
file.

TABLE OF CONTENTS 126

BILLING AND COLLECTION USER GUIDE

NOTE
An AUDDIS report (file) is produced whenever a payment
transfer problem appears to an existing Direct Debit Instruction
(Mandate).

AUDDIS files are emitted by the BACS (Bankers Automated Clearing
Service) payment network, the most popular method for sending
and receiving business payments in the UK.

NOTE
In this section, manual file import is possible. An AUDDIS file must have
 .csv.txt format in order to be processed and stored by the system.

The AUDDIS Files section contains details about all the requests for direct
debit payment that were denied and are registered into your system. If
necessary, you can also manually import AUDDIS reports.

You can search inside this repository by File name or Import Date. You can
inspect a record by double-clicking it. If necessary, you can manually import
an AUDDIS report file. See right below:

Import File Instructions
Below is an example of an Import Form:

TABLE OF CONTENTS 127

BILLING AND COLLECTION USER GUIDE

1. While in the same section, click Insert, at the top right corner of
your screen.

2. When the Import Form opens, select your file and then click
Import Data.

3. (Optional) Check the tabs of the record, for further details. See
also the next paragraph that explains how the record is organized.

4. Click Save and close.

Inside any AUDDIS record, the details about the denied payment are
organized as follows:

The first tab - includes the actual File with the details of the denied request
for a specific mandate and the auto-populated Import Date field.

The second tab - includes a grid containing every denied mandate extracted
from the imported file. For the case when there are many records listed, you
also can search inside this grid by different keywords - such as Record type,
Reference, Reason code, Payer name, Account number, Effective date, and
Option.

TABLE OF CONTENTS 128

BILLING AND COLLECTION USER GUIDE

HINT
For more information about the import rules and configurations, consult also the UK
Direct Debit and the Flow Parameters And Scheduled Jobs pages.

TABLE OF CONTENTS 129

BILLING AND COLLECTION USER GUIDE

Configurations
Billing and Collection enables you to simplify your billing and collection operations.
Invoicing is automatic only. Invoices are constantly generated into your system for all
your insurance products that are in Active status.

You can also configure Billing and Collection to deal with payments received from
different sources or systems - such as online payment processors, bank payment
orders, etc. The solution lets you process different types of payments, manually or
automatically. For payments that respect some rules, the allocation flow is also
completely automated.

Check the following pages to find out more about how this solution works:

 l Flow Parameters and Scheduled Jobs - for details about the parameters and jobs
that control the behaviors of the Billing and Collection solution.

 l Import Bank Statements - for details about how bank statements are imported
in the system.

 l Incoming Payments - for general details about how incoming payments are
handled by the system, and also:

 o Invoice Generation

 o Automatic Allocation

 o Manual Allocation

 o SEPA Direct Debit

 o UK Direct Debit

 l Outgoing Payments - for general details about how outgoing payments are
handled by the system, and also:

 o Outgoing Payments Admin

 o Outgoing Payment Allocation

TABLE OF CONTENTS 130

BILLING AND COLLECTION USER GUIDE

 o Manual Outgoing Payment Requests

 l Billing and Collection Endpoints - for details about dedicated APIs.

 l Security Roles - for details about the security roles that come predefined with
the solution.

 l Digital Assets - for descriptions of the Billing and Collection digital assets.

Flow Parameters and Scheduled Jobs
The following flow parameters and scheduled jobs are used with the Billing and
Collection solution.

 1 Flow Parameters
Parameter
Name Days After Unpaid Due Date

Details Type: Integer; Code: DAUDD
Parameter
name PayOnTime Retrial Days

Parameter
name FTOS_PYMT_DIDEConfiguration

Parameter
name PAID Payment Config

Parameter
name Days Before Expiration Grace Period

Parameter
name No. of Days Before Return

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Parameter
name Write Off Limits

Parameter
name Days before UK Mandates activation

TABLE OF CONTENTS 131

BILLING AND COLLECTION USER GUIDE

Parameter
Name Days After Unpaid Due Date

Component Billing and Collection
Correlated
with FTOS_PA_Policy Lapsed scheduled job

Description

This parameter sets the number of days after an unpaid installment’s due
date.
When the parameter is fulfilled, the policy is automatically moved from
InForce to Lapsed status.

Parameter
name PayOnTime Retrial Days

Details Type: Collection; Code: POTRD
Component Billing and Collection
Correlated
with GeneratePaymentForInstallments scheduled job

Description

This parameter is used to set the number of days, after the initial due date
set for an installment, after which the GeneratePaymentForInstallments
scheduled job triggers the PayOnTime retrial process.
This being a collection type parameter, you can add or set multiple values
for the number of days in which a new payment retrial must be made. Use
the parameter form to define a new item in the collection, as needed.

Parameter
name FTOS_PYMT_DIDEConfiguration

Details Type: JSON; Code: DIDE
Component Billing and Collection
Correlated
with FTOS_PYMT_DIDEInstructionFile scheduled job

Parameter
name PAID Payment Config

Parameter
name Days Before Expiration Grace Period

Parameter
name No. of Days Before Return

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Parameter
name Write Off Limits

Parameter
name Days before UK Mandates activation

TABLE OF CONTENTS 132

BILLING AND COLLECTION USER GUIDE

Parameter
Name Days After Unpaid Due Date

Parameter
name PayOnTime Retrial Days

Parameter
name FTOS_PYMT_DIDEConfiguration

Description

This parameter sets the DIDE type configuration. In order to set which
DIDE type will be applied, a specific key must be set in the Direct Debit
processor allowing the user to choose the desired option. If the option
configured in the processor is “Sepa” - the DIDE process will take in
consideration the functionality implemented for DIDE Sepa. Otherwise, if
the value is “UK”, the DIDE process will take into consideration the flow
implemented for DIDE UK.

Parameter
name PAID Payment Config

Details Type: Collection; Code: PAIDPYMT
Component Billing and Collection
Correlated
with N/A

Description

This parameter sets the details regarding PAD Payments.
The parameter contains details about:
- The commission set for payments,
- The beneficiary for payments,
- The IBAN where the payments are made,
- The bank correlated with the IBAN.

Parameter
name Days Before Expiration Grace Period

Details Type: Integer; Code: DBEGP
Component Billing and Collection, Notifications
Correlated
with FTOS_BC_PaymentUnconfirmedGracePeriod scheduled job

Description

This parameter sets the number of days before the expiration of the grace
period for an installment. Also, a Pre-announce lapsing notification is sent
to a chosen address, within the number of days set through this
parameter.

Parameter
name No. of Days Before Return

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Parameter
name Write Off Limits

Parameter
name Days before UK Mandates activation

TABLE OF CONTENTS 133

BILLING AND COLLECTION USER GUIDE

Parameter
Name Days After Unpaid Due Date

Parameter
name PayOnTime Retrial Days

Parameter
name FTOS_PYMT_DIDEConfiguration

Parameter
name PAID Payment Config

Parameter
name Days Before Expiration Grace Period

Parameter
name No. of Days Before Return

Details Type: Integer; Code: PRDAY
Component Billing and Collection
Correlated
with FTOS_PYMT_Payment_ReturnUnallocatedAmount scheduled job

Description

This parameter sets the number of days before automatically generating a
Payment Return for a payment which is still in Unallocated status in the
system.
The value set in this parameter is used by the FTOS_PYMT_Payment_
ReturnUnallocatedAmount scheduled job in order to trigger the payment
return generation process.

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Details Type: Integer; Code: SGDAY
Component Billing and Collection
Correlated
with FTOS_PYMT_InsertStatementDueDate scheduled job

Parameter
name Write Off Limits

Parameter
name Days before UK Mandates activation

TABLE OF CONTENTS 134

BILLING AND COLLECTION USER GUIDE

Parameter
Name Days After Unpaid Due Date

Parameter
name PayOnTime Retrial Days

Parameter
name FTOS_PYMT_DIDEConfiguration

Parameter
name PAID Payment Config

Parameter
name Days Before Expiration Grace Period

Parameter
name No. of Days Before Return

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Description

This parameter sets the day for generating the statement (invoice) in
advance with a number of days before the payment's due date. This
parameter is set for all the invoices to be generated for the installments
on a policy. The FTOS_PYMT_InsertStatementDueDate scheduled job that
triggers the generation of the invoice is using this parameter.

NOTE
The configuration of this parameter is made at the product
level, where the user can select that the current product
keeps the default parameter value or can be configured with
a specific value, as desired.

Parameter
name Write Off Limits

Details Type: Collection; Code: WO
Component Billing and Collection
Correlated
with N/A

Parameter
name Days before UK Mandates activation

TABLE OF CONTENTS 135

BILLING AND COLLECTION USER GUIDE

Parameter
Name Days After Unpaid Due Date

Parameter
name PayOnTime Retrial Days

Parameter
name FTOS_PYMT_DIDEConfiguration

Parameter
name PAID Payment Config

Parameter
name Days Before Expiration Grace Period

Parameter
name No. of Days Before Return

Parameter
name Generating Statement Days in Advance/ No. of Days in Advance

Parameter
name Write Off Limits

Description

This parameter sets the limit values for a Write-Off payment. This kind of
payment is generated automatically by the system during the allocation of
payments. This parameter can be set for RON and EUR currencies.

NOTE
The configuration of this parameter is made at the product
level, where the user can select that the current product
keeps the default parameter value or can be configured with
a specific value, as desired.

Parameter
name Days before UK Mandates activation

Details Type: int; Code: DBUKMA
Component Billing and Collection
Correlated
with N/A

Description

This parameter sets the number of days allowed for receiving notifications
(e.g. AUDDIS) about the cancellation of a mandate in Pending status.
E.g. If this parameter is set to 5 days, the Draft mandate becomes Active
in 5 days time, provided the mandate is not included in any imported
AUDDIS file (containing a cancellation notification for it) by the 5th day
(respectively by the last day of the period configured in the parameter).

TABLE OF CONTENTS 136

BILLING AND COLLECTION USER GUIDE

 2 Scheduled Jobs
Job name GeneratePaymentForInstallments
Scheduled At 06:32 AM, daily run

Description

This job notifies the system to withdraw a payment amount - through the
PayUOnTime process.
After the initial due date set for an installment, this job also uses the
PayUOnTime retrial days parameter to withdraw the payment amount.
For example:
- First payment retrial – 0 day after installment’s due date
- Second payment retrial – 3 days after installment’s due date
- Third payment retrial – 11 days after installment’s due date.

Job name FTOS_PYMT_Payment_ReturnUnallocatedAmount
Scheduled At 02:00 AM, daily run

Description

This job creates payment returns for payments which are in Unallocated
status for more than the number of days set by the No. of Days Before
Return parameter.
For example: If a payment is in Unallocated status for more than 5 days, a
payment return is automatically generated for this unallocated payment,
in the sixth day.

Job name FTOS_PYMT_InsertStatementDueDate
Scheduled At 03:00 AM, daily run
Job name FTOS_PYMT_PaymentReminder
Job name FTOS_GetExchangeRate_BNR
Job name FTOS_PYMT_DirectDebitMandateStatus
Job name FTOS_PYMT_OutgoingPaymentInstructionFile
Job name FTOS_PYMT_DIDE_ADDACS
Job name DIDEUK_Instructions
Job name FTOS_PYMT_DIDEInstructionFile

TABLE OF CONTENTS 137

BILLING AND COLLECTION USER GUIDE

Job name GeneratePaymentForInstallments
Job name FTOS_PYMT_Payment_ReturnUnallocatedAmount
Job name FTOS_PYMT_InsertStatementDueDate

Description

This job generates an insurer statement (invoice) for policies in Proposal,
Issued or InForce status, at each installment’s due date.

NOTE
 Policies in Cancelled status are excluded for new invoice
generation.
For products on which the Specific SGDAY option is checked,
the invoices are generated taking into account the Specific
SGDAY chosen value.
For products on which the Specific Day of the Month option
is checked, and the product becomes active after that specific
day of the month, the invoices are generated starting with
the next month, on the specified day.

Job name FTOS_PYMT_PaymentReminder
Scheduled At 09:00 AM in the working day set by the Payment Reminder parameter

Description

This job sends a payment reminder notification about any installment in
Unpaid status to the policyholders.
This job runs in the nth working day set in Payment Reminder parameter
(number of days after DIDE generation).

Job name FTOS_GetExchangeRate_BNR
Scheduled At 03:20 AM, daily run

Description
This job gets the official BNR (National Bank of Romania) Exchange Rate
daily values for currencies, in order to be used inside the different Billing
and Collection operations.

Job name FTOS_PYMT_DirectDebitMandateStatus
Scheduled At 05:00 AM, daily run

Description

For all the mandates registered in the system, the job checks the Begin
and End Dates against the current date and it updates the mandate
statuses accordingly. For example if the current date is passed the End
Date set for a mandate, the mandate status is changed to Expired.

Job name FTOS_PYMT_OutgoingPaymentInstructionFile
Scheduled At 05:00 AM, daily run
Job name FTOS_PYMT_DIDE_ADDACS
Job name DIDEUK_Instructions
Job name FTOS_PYMT_DIDEInstructionFile

TABLE OF CONTENTS 138

BILLING AND COLLECTION USER GUIDE

Job name GeneratePaymentForInstallments
Job name FTOS_PYMT_Payment_ReturnUnallocatedAmount
Job name FTOS_PYMT_InsertStatementDueDate
Job name FTOS_PYMT_PaymentReminder
Job name FTOS_GetExchangeRate_BNR
Job name FTOS_PYMT_DirectDebitMandateStatus
Job name FTOS_PYMT_OutgoingPaymentInstructionFile

Description

Job purpose: to generate a payment instruction file with all outgoing
payments complying with he following conditions:

 l the outgoing payment is in Scheduled status;

 l the payment date is scheduled for the current date, or
before the current date.

File format: .csv with .txt extension; time stamped.
File structure: Reference No; Beneficiary’s Name; Beneficiary's IBAN;
Beneficiary's Bank; Payment Amount; Currency; Scheduled Date; Payer's
Name; Payer's IBAN; Payer's Bank.

Job name FTOS_PYMT_DIDE_ADDACS
Scheduled At 5:15 AM, daily run

Description
This job is scheduled to perform status changes (canceling, modifying or
reactivating) on the existing mandates, based on the unprocessed records
from the buffer - the FTOS_PYMT_DIDE_ADDACS entity.

Job name DIDEUK_Instructions
Scheduled At 04:00 AM, daily run

Description

The job is scheduled to generate mandate activation instructions for the
BACS* system, in a standardized .txt file (DIDEUK_Instructions) - based on
which the system starts the mandate activation procedure. This job is
dedicated to the UK direct debit processing, only. It is the job that collects
all the Draft mandates and sends instructions for their activation to BACS -
in a file that complies with the format requested by BACS.

Job name FTOS_PYMT_DIDEInstructionFile
Scheduled At 03:00 AM, daily run

Description

This job uses the FTOS_PYMT_DIDEConfiguration parameter in order to
generate the direct debit instruction file in the system. The file is
generated in a standardized .txt format, in order to be suitable to the bank
that is going to process it. The file contains the instructions for direct debit
billings for an active mandate - based on which the bank transfers the
installment amount from the insured into insurer's account. Depending on
the configuration, this job generates the DIDEPaymentsInstructionFile (for
SEPA) and DD_BACSPayments (for UK), also.

TABLE OF CONTENTS 139

BILLING AND COLLECTION USER GUIDE

*BACS Payment Schemes Limited, previously known as Bankers' Automated Clearing
System, is responsible for the clearing and settlement of UK automated direct debit
and BACS Direct Credit and the provision of third-party services.

Import Bank Statements
The Import Bank Statements functionality lets you import bank statement files for
payment processing. In FintechOS Portal, select Billing and Collection and then select
Bank Statements. On the Bank Statements List page, click the Insert button to load a
new bank account statement. The Insert triggers the import of the bank file in the
system and changes the business status of the record to Imported. This functionality
also allows for import of payment files from online payment processors.

The journeys, entities, libraries, and endpoints related to the Import Bank Statements
functionality are as follows:

Data model
Entity FTOS_PYMT_PaymentGroup with all attributes.

Payment Group Insert Journey
General description:

This is a user journey aimed at implementing the Insert Bank Statement functionality.
The journey is marked as Default for insert on FTOS_PYMT_PaymentGroup entity.

After selecting the file to import, when pressing Import Data, the record is saved -
using the ebs.saveEditForm method, from the FintechOS Client Side SDK. Next, the
flow is redirected to the default form driven flow of FTOS_PYMT_PaymentGroup
entity - using the ebs.goToUrl method from FintechOS Client Side SDK.

Payment Group Journey
General description:

TABLE OF CONTENTS 140

BILLING AND COLLECTION USER GUIDE

This is a user journey aimed at implementing the payment group functionality. The
journey is marked as Default for insert on FTOS_PYMT_PaymentGroup entity. This
journey has three steps:

 1. Bank Statement - Processing the information from the bank statement.

 2. Payments - Making the payment.

 3. GL - Creating the general ledger record for the payment.

The journey uses the initiateTotals function, which collects all the unallocated
payments - paymentOrder, paymentExternal, brokerPremiumPayment and
outgoing - and shows them to the Payments and Outgoing Payments grids.

Input parameters: paymentGroupId - The Id of the payment group.

Output Parameters: N/A.

Business Workflow Configurations Actions
Below is the diagram with the statuses and transitions managed through the Import
Bank Statements functionality.

Business Workflow Transitions:

Status Description
_Draft Initial status

Draft_
Imported

From Draft to Imported - final status.
This transition is manual and it happens when the user presses the Import
button.

TABLE OF CONTENTS 141

BILLING AND COLLECTION USER GUIDE

Server Side Script Libraries

FTOS_PYMT_PaymentGroup_Library
From this library, the General function is used. This function includes the
following functions:

getAllocatedPayments
This function gets all the allocated payments from a specific bank
statement, based on Id.

Input parameters: paymentGroupId - The Id of the payment group.

Output parameters: Returns the results of the fetch.

paymentGroupResult
Based on the result of the getAllocatedPayments function, this
function throws an error if a bank statement has an assigned
payment.

Input parameters: paymentGroupId - The Id of the payment group.

Output parameters: throwException - If conditions are met.

FTOS_ImportPaymentFiles
From the FTOS_ImportPaymentFiles library, the following functions are
used:

BRD
Function used to process standardized bank statement files
(complying with the MT940 format) for payment accounts with BRD
code.

Inside the BRD function, the following functions are used:

TABLE OF CONTENTS 142

BILLING AND COLLECTION USER GUIDE

getPaymentGroupDetails
This function gets details about the payment group -
paymentAccountId, file, FTOS_PYMT_
PaymentGroupid, paymentGroupTypeId .

Input parameters: paymentGroupId - The Id of the
payment group.

Output parameters: pg - The result of the query, which
returns the details about the payment group.

getImportTemplateByName
This function gets the import template.

Input parameters: templateName - The name of the
template.

Output parameters: t - The result of the query made from
the data import entity.

updateOldImportedValues
This function updates the lastImport attribute of previous
payments in FTOS_PYMT_Payment_BRD entity to false.

Input parameters: N/A.

Output parameters: N/A.

getPaymentAccountDetails
This function gets the details about the payment account.

Input parameters: paymentAccountId - The Id of the
payment account.

TABLE OF CONTENTS 143

BILLING AND COLLECTION USER GUIDE

Output parameters: pa - The details about the payment
account, returned by the query.

getUnprocessedBRDPayments
This function gets the unprocessed payments.

Input parameters: paymentGroupId - The Id of the
payment group.

Output parameters: initialPayments - The result of the
query containing all unprocessed BRD payments.

generateDetailsJSON
This function generates an object containing payment
details.

Input parameters: brdPaymentDetails

Output parameters: returnObj - The object containing
payment details.

processBRDPayments
This function executes the following:

 l selects the payments by group id, with the details
about the unprocessed payments;

 l calls the FTOS_PYMT_PaymentAllocation library
to allocate payment;

 l updates the isProcessed flag attribute to true, to
mark the payment as processed;

 l changes the business status to Imported.

Input parameters:

TABLE OF CONTENTS 144

BILLING AND COLLECTION USER GUIDE

 l paymentGroupId - The Id of the payment group.

 l paymentAccountId - The Id of the payment
account.

Output parameters: N/A.

PAYU
Function used to process standardized statement files from PayU.

Inside the PAYU function, the following functions are used:

getImportTemplateByName
This function gets the import template.

Input parameters: templateName - The name of the
template.

Output parameters: t - The result of the query made from
the data import entity.

getPaymentDetails
This function gets payment details - file,
paymentAmount, currencyId, businessStatusId.

Input parameters: paymentId - The unique identifier of
the payment.

Output parameters: pa - The details about the payment,
returned by the query.

deleteRevenuesByPaymentId
This function deletes revenue records, by id, from the
FTOS_PYMT_ExternalPaymentRevenue entity.

TABLE OF CONTENTS 145

BILLING AND COLLECTION USER GUIDE

Input parameters: paymentId - The unique identifier of
the payment.

Output parameters: N/A.

importFile
This function imports a PayU file.

Input parameters:

 l fileAttr - The file.

 l additionalValues - The additional values.

 l templateId - The Id of the template.

Output parameters: N/A.

ExternalRevenue
Inside theExternalRevenue function, the following functions are
used:

getStatementByReference
This function gets the statement information.

Input parameters: reference - The reference for the
invoice.

Output parameters:

 l rez - The result of the query.

 l null - In case the query result is empty.

getConfirmedPaymentsByStatementId

TABLE OF CONTENTS 146

BILLING AND COLLECTION USER GUIDE

The function gets the payments in Confirmed status.

Input parameters: statementId - The statement
identifier.

Output parameters: fetchResult - The result of the
query.

getCurrencyDetailsById
The function gets the currency code.

Input parameters: currencyId - The currency identifier.

Output parameters:

 l rez - The result of the query.

 l null - In case the currency does not exist.

getTotalsBdx
The function gets the total amount on external payment
revenues.

Input parameters: paymentId - The payment unique
identifier.

Output parameters:

 l sum - The total amount on external payment
revenues.

 l 0 - If there are no external payment revenues.

getCurrencyByCode
The function gets the currency Id by currency code.

Input parameters: code - The currency code.

TABLE OF CONTENTS 147

BILLING AND COLLECTION USER GUIDE

Output parameters:

 l rez - The result of the query.

 l null - If there is no currency.

getExternalRevenueByPaymentId
The function gets details about the external payment
revenue.

Input parameters: paymentId - The payment identifier.

Output parameters: rez - The details returned by query.

validateExternalRevenueData
The function checks external revenue data.

Input parameters: paymentId - The payment identifier.

Output parameters: bdxOk - true/ false.

checkReconciliationProcess
The function checks the reconciliation process by
subtracting the paymentAmount from the totalAmount.

Input parameters:

 l paymentId - The payment identifier.

 l paymentDetails - The payment details.

Output parameters: true/ false.

validatePayUPayment

TABLE OF CONTENTS 148

BILLING AND COLLECTION USER GUIDE

The function performs the PayU payment validation. Next,
it changes the business status to Closed.

Input parameters: paymentId - The payment identifier.

Output parameters: N/A.

isReadyToValidate
The function checks whether the payment is already closed.
Next, it verifies if there are unmatched records or
reconciliation errors.

Input parameters: paymentId - The payment identifier.

Output parameters: N/A.

MT
Inside the MT function we have the following functions:

getFileStr
Inside this function, the getTextFileReader function is
used to store the content of a file.

Input parameters: fileRealName - The Id of the file.

Output parameters: content - Returns the file content in
string format.

normalizeStr
The function normalizes strings.

Input parameters:

TABLE OF CONTENTS 149

BILLING AND COLLECTION USER GUIDE

 l str - The string.

 l splitter - A splitter.

 l code - The code.

Output parameters: items - The normalized items.

setItemObj
The function reads the imported file.

Input parameters:

 l itemStr

 l code

Output parameters: item - The idem found.

processMTItems
The function processes the MT940 document.

Input parameters:

 l items - The items form the file.

 l code

Output parameters: true/ false

generateDetailsMTJSON
The function gets the payment details for the incoming
payments.

Input parameters:

TABLE OF CONTENTS 150

BILLING AND COLLECTION USER GUIDE

 l paymentDetails - The details of the payment.

 l broker - The broker details.

Output parameters: returnObj - Returns an object with
the payment details.

generateDetailsMTJSONOutput
The function gets the payment details for the outgoing
payments.

Input parameters: paymentDetails - The details of the
payment.

Output parameters: returnObj - Returns an object with
the payment details.

getReferenceFromStr
The function gets reference from a string.

Input parameters: str - The string containing the invoice
reference.

Output parameters: reference - The reference for the
invoice.

getPolicyNoFromStr
The function gets the policy number from a string.

Input parameters:str - The string containing the number
of the policy.

Output parameters: policyNo - The policy number.

processMTPayments

TABLE OF CONTENTS 151

BILLING AND COLLECTION USER GUIDE

This function calls the FTOS_PYMT_PaymentAllocation
library in order to automatically allocate payments.

Input parameters:

 l paymentGroupId - The Id of the payment group.

 l paymentAccountId - The Id of the payment
account.

 l code - The code of the payment.

Output parameters: N/A.

getBankId
This function gets the bankId from the IBAN.

Input parameters: iban - The IBAN of the payment.

Output parameters: bankId - The Id of the bank.

isPayerNameInAccount
This function gets the payer.

Input parameters: name - The name of the payer.

Output parameters: accountId - Returns the id of the
account associated with the input name, if it exists. If not,
the output is null.

getBrokerId
This function gets the identifier for the broker.

Input parameters: iban - The IBAN of the broker.

TABLE OF CONTENTS 152

BILLING AND COLLECTION USER GUIDE

Output parameters: brokerId - Returns the Id of the
broker account associated with the input value, if it exists.
If not, the output is null.

getUnprocessedMTPayments
This function gets the unprocessed payments.

Input parameters:

 l paymentGroupId - The Id of the payment group.

 l code - The code of the payment.

Output parameters: initialPayments - The previous
payments.

getPaymentGroupDetails
This function gets the payment group details-
paymentAccountId, file, FTOS_PYMT_
PaymentGroupid, paymentGroupTypeId.

Input parameters: paymentGroupId - The Id of the
payment group.

Output parameters:pg - The result of the query, which
returns the details about the payment group.

getPaymentAccountDetails
This function gets the payment account details.

Input parameters: paymentAccountId - The Id of the
payment account.

Output parameters: pa - The details about the payment
account, returned by the query.

TABLE OF CONTENTS 153

BILLING AND COLLECTION USER GUIDE

ING
Function used to process standardized bank statement files
(complying with the MT940 format) for payment accounts with ING
code.

Inside the ING function, the following functions are used:

getTransactions
This function gets the transactions details.

Input parameters: itemStr - The string containing the
payment details.

Output parameters: transactions - The transactions
from the bank statement.

setTransactionLineItems
This function gets the transactions lines.

Input parameters:

 l insertINGItemTransaction - The transaction
details.

 l transactionLineStr - The string containing the
line of the transaction.

 l currency - The currency of the payment.

Output parameters: N/A.

setTransactionDescription
This function defines the transaction details.

Input parameters:

TABLE OF CONTENTS 154

BILLING AND COLLECTION USER GUIDE

 l insertINGItemTransaction - The transaction
details.

 l transactionDescription - The description of the
transaction.

Output parameters: N/A.

BRDMT
Function used to process standardized bank statement files
(complying with the MT940 format) for payment accounts with
BRDMT code.

Inside the BRDMT function, the following functions are used:

function getTransactions(itemStr)
This function gets the transactions from a string.

Input parameters: itemStr - The string containing the
payment details.

Output parameters: transactions - The transactions
from the bank statement.

setTransactionLineItems
This function inserts the transaction lines.

Input parameters:

 l insertBRDMTItemTransaction - The transaction
details.

 l transactionLineStr - The string containing the
line of the transaction.

 l currency - The currency of the payment.

TABLE OF CONTENTS 155

BILLING AND COLLECTION USER GUIDE

Output parameters: N/A.

setTransactionDescription
This function defines the transaction details.

Input parameters:

 l insertBRDMTItemTransaction - The transaction
details.

 l transactionDescription - The description of the
transaction.

Output parameters: N/A.

ABNMT
Function used to process standardized bank statement files
(complying with the MT940 format) for payment accounts with
ABNMT code.

Inside the ABNMT function, the following functions are used:

function getTransactions(itemStr)
This function gets the transactions from a string.

Input parameters: itemStr - The string containing the
payment details.

Output parameters: transactions - The transactions
from the bank statement.

setTransactionLineItems
This function inserts the transaction lines.

Input parameters:

TABLE OF CONTENTS 156

BILLING AND COLLECTION USER GUIDE

 l insertBRDMTItemTransaction - The transaction
details.

 l transactionLineStr - The string containing the
line of the transaction.

 l currency - The currency of the payment.

Output parameters: N/A.

setTransactionDescription
This function defines the transaction details.

Input parameters:

 l insertBRDMTItemTransaction - The transaction
details.

 l transactionDescription - The description of the
transaction.

Output parameters: N/A.

Incoming Payments
Incoming payments are received by the insurer from the policyholder as payment for
policy coverage. With Billing and Collection, the data about the incoming payments is
processed and matched (mainly automatically) to a policyholder's account, in order to
label an installment as being paid. When an invoice opened for an installment is
closed, the details about the payment and the clearing date are updated and stored in
the system.

TABLE OF CONTENTS 157

BILLING AND COLLECTION USER GUIDE

The Billing and Collection solution can be used in conjunction with different types of
incoming payments such as bank payment orders, direct debit payments, credit card
payments, payments made through online processors.

See more details about handling Incoming Payments in the configuration pages:

 l Invoice Generation - for details about how invoices are generated in the system.

 l Direct Debit SEPA - for details about how SEPA direct debit mandates are handled by

the system.

 l Direct Debit UK - for details about how UK direct debit mandates are handled by
the system.

 l Manual Allocation - for details about how the manual allocation for incoming
payments works.

 l Automatic Allocation - for details about how the automated allocation for
incoming payments works.

Invoice Generation
Scheduled Job

The FTOS_PYMT_InsertStatement invoice statement generation job is scheduled to
run every day at 3:00 AM. This job finds the installments that are eligible for the
generation of new statements. This job calls the FTOS_PYMT_
InsertStatementDueDate endpoint.

Server Automation Scripts

The FTOS_PYMT_InsertStatementDueDate server side script uses the following
functions:

TABLE OF CONTENTS 158

BILLING AND COLLECTION USER GUIDE

insertStatement
Example of calling the function:
1 insertStatement(maxDate,null)

Based on the imported library, insertStatement(maxDate,null) is the
function that handles the generation of statements.

Input parameters:

 l maxDate: It is obtained by adjoining theinvariantDate of the
current date to the daysBeforePolicyScheduleDueDate
parameter. This variable represents the maximum date until the
policies are filtered based on installments.

 l null: accountId.

Output parameters: N/A.

Variables:

 l libFlowParameter: import from the FTOS_PA_FlowParameter
library.

 l daysBeforePolicyScheduleDueDate: based on the imported
library, through the getNoOfDaysInAdvance function, this variable
receives an integer value that is set as the SGDAY flow parameter .

 l statementGenerationLib: import from the FTOS_PYMT_
Statements library.

Server Automation Script Libraries

From the FTOS_PYMT_Statements server automation script library, the following
functions are used:

getStatementGenerationRules
This function gets a JSON object from the FTOS_DFP_ProcessorSettings
entity. The object contains the settings for statement processing and has the
following structure:

1 {

TABLE OF CONTENTS 159

BILLING AND COLLECTION USER GUIDE

2 "StatementsRules": {
3 "rulesArr": [
4 "multiplePolicies",
5 "singlePolicies",
6 "multiplePoliciesByQuoteMultipleNext",
7 "multipleFirstPoliciesByQuoteSingleNext"
8],
9 "OP": 0,

10 "PayU": 0,
11 "PayU-on Time": 1,
12 "brokerCollection": 0
13 }
14 }

Object.prototype.getKey(value)
Example of calling the function:
1 statementRules.getKey(k)

This function returns an array of payment types based on each Rule Name
Key, from the FTOS_PYMT_StatementProcessor parameter.

This function returns an array of payment types based on each Rule Name
Key for processing statements, from the FTOS_DFP_ProcessorSettings entity.

The function is used for filtering installments by payment types based on rule
names (rulesArr).

Input parameters: value - The rule name key. For example: 0, 1, 2, ...

Output parameters: An array of strings with the Payment Types. For
example:

 l For multiplePolicies, an output example is ["OP", "PayU",
"brokerCollection"].

 l For singlePolicies, an output example is ["PayU-on Time"].

 l For multiplePoliciesByQuoteMultipleNext and
multipleFirstPoliciesByQuoteSingleNext, an output example
is an empty array [].

getLastMonth

TABLE OF CONTENTS 160

BILLING AND COLLECTION USER GUIDE

Example of calling the function:
1 getLastMonth

This function returns an object with invariant dates: the firstDay of last
month and the lastDay of last month, in order to help filtering the
installments with brokerCollection Payment Type .

Input parameters: N/A,

Output parameters: An object that contains the invariant values as following:

1 lastMonthObj = {
2 "firstDay": firstDay,
3 "lastDay": lastDay
4 }

getMonthId

Example of calling the function:

1 getMonthId(month)

This function gets the option set item Id from the months option set, based
on the month number and, next, returns an object with the month Id and
month name.

Input parameters: monthNo - The month number; it can take values from 1
to 12.

Output parameters: An object that contains monthId and monthName.

getStatementMonthId
Example of calling the function:
1 getStatementMonthId(invariantDate)

This function returns the FTOS_PYMT_StatementMonthid primary key
attribute, from the FTOS_PYMT_StatementMonth entity, based on a query

TABLE OF CONTENTS 161

BILLING AND COLLECTION USER GUIDE

that searches for the monthId and year. If the fetch is empty, this function
inserts the current search values into the FTOS_PYMT_StatementMonth
entity.

Input parameters: maxDate - The invariant date for the statement.

Output parameters: statementMonthId - The Id of the statement month.

compareObjects
Example of calling the function:
1 compareObjects(object1, object2)

This function compares objects.

Input parameters:

object1 - An object containing the specified details.

object2 - An object containing the specified details.

Output parameters: boolean.

compareArrays
Example of calling the function:
1 compareArrays(a, b)

This function compares arrays.

Input parameters:

 l a - An array containing the specified data.

 l b - An array containing the specified data.

Output parameters: boolean.

getPosition
Example of calling the function:
1 getPosition(elem, arrEleme)

TABLE OF CONTENTS 162

BILLING AND COLLECTION USER GUIDE

This function gets the position of a specified array element from inside the
array.

Input parameters:

 l elem - The element to compare.

 l arrEleme - The array.

Output parameters: The element position, if found - else, null.

getGenericProdPosition

Example of calling the function:

1 getGenericProdPosition(arr, elem)

This function gets the position of an array element from an array object.

Input parameters:

 l elem - The element to compare.

 l arr - The array.

Output parameters: The element position, if found - else, null.

getMaxDate

Example of calling the function:

1 getMaxDate(days)

This function gets the maximum date for the payment - such as the SGDAY or
the last day of the month. The maximum date variable represents the
maximum date until the policies are filtered based on installments.

Input parameters: days - The maximum date for a payment.

Output parameters: InvariantDate - The invariant date.

TABLE OF CONTENTS 163

BILLING AND COLLECTION USER GUIDE

compareProdDateInArr

Example of calling the function:

1 compareProdDateInArr(arr, day)

This function compares dates in an array of dates.

Input parameters:

 l arr - The array of the specified dates.

 l day - The invariant date.

Output parameters: The product Id, if the days match - else, it returns
false.

compareProdDate

Example of calling the function:

1 compareProdDate(day1, day2)

This function compares dates.

Input parameters:

 l day1 - The invariant date.

 l day2 - The invariant date.

Output parameters:

The product Id, if the days match - else, it returns false.

getProducts

Example of calling the function:

1 getProducts(sgDay)

TABLE OF CONTENTS 164

BILLING AND COLLECTION USER GUIDE

This function gets all the products that are in VWDraft, VWVersion Draft and
VWVersion Unapproved status and also with the writeOffId attribute set
to NoWriteOff, GenericWriteOff, or SpecificWriteOff, at the product level.
Next, it filters all found products by start date and end date.

Input parameters: sgDay - The SGDAY parameter (integer) from the
processor.

Output parameters: obj - An object containing the requested data.

groupedSpecificProducts

Example of calling the function:

1 groupedSpecificProducts(productsArr)

This function filters for products with Specific WriteOff settings, based on
their writeOffId attibute.

Input parameters: productsArr - An array of products.

Output parameters: productsResultArr - An array of products that satisfy
the request.

generateGroupedProducts

Example of calling the function:

1 generateGroupedProducts(resultGroupedProducts)

This function gets all products filtered by date and WriteOff type.

Input parameters: resultGroupedProducts - An array containing the
products.

Output parameters: resultGroupedProducts - An array containing the
products found by the fetch.

insertStatement

TABLE OF CONTENTS 165

BILLING AND COLLECTION USER GUIDE

Example of calling the function:
1 insertStatement(invariantDate, accountId)

This function prepares the rules for generating the invoices, by using a loop
of conditions.

Based on the chosen parameter, from the FTOS_PYMT_StatementProcessor
entity, the function can trigger four types of statement generation flows:

 l multiplePolicies: where multiple policies are included, based on
the Contractor, Currency, Payment Type, Product and Due Date;

 l singlePolicies: where a single policy is included;

 l multiplePoliciesByQuoteMultipleNext: for first installments -
where multiple policies are generated by the same quote or for next
installments - where multiple policies are included, based on the
Contractor, Currency, Payment Type and Due Date;

 l multipleFirstPoliciesByQuoteSingleNext: for first
installments - where multiple policies are generated by the same quote
or for next installments - where a single policy is included.

Input parameters:

 l maxDate: The invariant date values for the statement.

 l accountId: Null.

Output parameters: N/A.

Variables:

 l rulesArr - An array of rule names. For example:
[multiplePolicies, singlePolicies,
multiplePoliciesByQuoteMultipleNext,
multipleFirstPoliciesByQuoteSingleNext]

 l ruleName - A string, for each rule name. For example:
multiplePolicies.

 l groupByPolicy - A boolean (true, false) value, used to group by
policy.

TABLE OF CONTENTS 166

BILLING AND COLLECTION USER GUIDE

 l groupByQuote - A boolean (true, false) value, used to group by quote.

 l paymentTypeArr - An array of payment types. For example: [OP,
PayU, brokerCollection].

 l groupedProducts - An array of products.

insertStatementByPaymentType
Example of calling the function:
1 insertStatementByPaymentType(invariantDate, accountId,

ruleName, groupByPolicy, groupByQuote, paymentTypeArr, 1)

Input parameters:

 l invariantDate - The invariant date of the statement.

 l accountId - The Id of the account.

 l ruleName - The name of the rule.

 l groupByPolicy - The boolean for grouping by policy.

 l groupByQuote - The boolean for grouping by quote.

 l paymentTypeArr - The array containing the payment types.

 l installmentNo - The installment number variable. It can take the
following values:

null - for a filter without installment number,

1 - for the first installment,

2 - for all other installments except the first.

Output parameters: N/A.

Variables:

TABLE OF CONTENTS 167

BILLING AND COLLECTION USER GUIDE

 l currentDate - The current day, with the following hour format
00:00:00.000. This variable is used in statement generation for filling in
the installmentsStartDate and statementDate attributes.

 l lastMonth - An object containing the first day of last month and the
last day of last month, returned by the getLastMonth function.

 l statementMonthId - The statementMonthid attribute from FTOS_
PYMT_StatementMonth entity, returned by the
getStatementMonthId(invariantDate) function. This variable is
used in statement generation for filling in the statementMonthId
attribute.

 l libParameter - For importing the FTOS_PA_FlowParameter library.

 l brokerScope - based on the FTOS_PA_FlowParameter imported
library, this variable receives a string value from the option set item
that is set as the BKSCOPE flow parameter.

 l businessStatusPolicyProposal - The Id of Proposal status from
the FTOS_INSPA_Policy entity.

 l businessStatusPolicyIssued - The Id of Issued status from the
FTOS_INSPA_Policy entity.

 l businessStatusPolicyEnforced - The Id of Enforced status from
the FTOS_INSPA_Policy entity.

 l businessStatusPolicySuspended - The Id of Suspended status
from the FTOS_INSPA_Policy entity.

 l policyPaymentTypeOPOptionSetValue - The Id of the OP option
set item from the FTOS_INSPA_PolicyPaymentType option set.

 l policyPaymentTypePayUOptionSetValue - The Id of the PayU
option set item from the FTOS_INSPA_PolicyPaymentType option set.

 l policyPaymentTypePayUOnTimeOptionSetValue - The Id of the
PayU-on time option set item from the FTOS_INSPA_
PolicyPaymentType option set.

 l policyPaymentTypeBrokerCollection - The Id of the
brokerCollection option set item from the FTOS_INSPA_
PolicyPaymentType option set.

TABLE OF CONTENTS 168

BILLING AND COLLECTION USER GUIDE

 l fetchInstallmentGroup - This fetch executes the following actions:

Gets all the payment schedules (installments) from FTOS_INSQB_
PaymentSchedule entity, for policies that have currency - currencyId
is not null.

Adds attributes needed for filtering from the FTOS_INSQB_
PaymentScheduleDetail - the installments entity and also from the
FTOS_INSPA_Policy entity.

Calculates the sum out of the following installments attributes:
installmentAmount, paidAmount, commissionAmount,
taxAmount, netPremium, from the FTOS_INSQB_
PaymentScheduleDetail entity, based on the rules conditions.

 l fetchInstallments - This fetch executes the following:
Gets each filtered payment schedule found in the
fetchInstallmentGroup fetch.
Generates the statement detail according to rules and inserts the
required values in the FTOS_PYMT_StatementDetail entity.
Calculates and updates the statement DueDate attribute from the
FTOS_INSQB_PaymentScheduleDetail entity.
Changes the installment status in StatementIssued.

Filtering Configurations

The following are examples about how to define the filtering for the fetch needed to
generate statements:

Filtering with fetchInstallmentGroup
For the fetchInstallmentGroup function, you can define the filtering for
the fetch based on the following attributes:

Attributes Conditions Entity
accountId Is not null. FTOS_INSPA_Policy

businessStatusId
Is in Proposal,
Enforced, Issued or
Suspended status.

FTOS_INSPA_Policy

currencyId Is not null. FTOS_INSQB_
PaymentSchedule

TABLE OF CONTENTS 169

BILLING AND COLLECTION USER GUIDE

Attributes Conditions Entity

dueDate Is not null. FTOS_INSQB_
PaymentScheduleDetail

hasStatementDetail Is null or is equal with
false.

FTOS_INSQB_
PaymentScheduleDetail

installmentAmount Is grater than or equal
with 0.

FTOS_INSQB_
PaymentScheduleDetail

installmentId Is in On time status. FTOS_PYMT_
StatementDetail

insuranceProductId Is not null. FTOS_INSPA_Policy

policyPaymentTypeId

Is not an empty array.
Can take one of the
following values: Bank
Transfer, PayU, PayU-
On Time or Broker
Collection.

FTOS_INSPA_Policy

The following are the types of push rules for fetching the needed data for
generating statements:

Fetch Type Specific
Conditions Description

multiplePolicies insuranceBroker
is null

The statement is
generated based
on the
accountId,
currency,
payment type
and due date. Do
not apply
additional
conditions.

singlePolicies group by policy

The statement is
generated based
on the FTOS_
INSPA_Policyid
attribute.

multiplePoliciesByQuoteMultipleNext -
first installment

group by quote
number

The statement is
generated for the
multiple policies
logic based on
the quote
number.

TABLE OF CONTENTS 170

BILLING AND COLLECTION USER GUIDE

Fetch Type Specific
Conditions Description

multiplePoliciesByQuoteMultipleNext -
next installments

insuranceBroker
is null

The statement is
generated based
on the
accountId,
currency,
payment type
and due date.

multipleFirstPoliciesByQuoteSingleNext -
first installment

group by quote
number

The statement is
generated for the
single policies
logic based on
the quote
number.

multipleFirstPoliciesByQuoteSingleNext -
next installments group by policy

The statement is
generated based
on the FTOS_
INSPA_Policyid
attribute.

brokerConditionRules.notBrokerCollectio
nRules

InsuranceBrokerI
d is not null.
The Policy
Payment Type is:
Bank Transfer,
PayU or PayU-
On Time

The statement is
generated for a
Broker policy
based on the
InsuranceBrokerI
d attribute.

brokerConditionRules.BrokerCollectionR
ules

InsuranceBrokerI
d is not null. Due
Date is in the
previous month.
Policy Payment
Type takes the
Broker
Collection value.

The statement is
generated for a
Broker policy
based on the
InsuranceBrokerI
d attribute, on
the date set by
the Broker_
Billing_Day_
Statment_
Generation
parameter.

Filtering for Broker Policies - Example

TABLE OF CONTENTS 171

BILLING AND COLLECTION USER GUIDE

The following is an example of an object aimed at filtering for Broker policies
that do not have the Payment Type set to Broker Collection:

1 if (brokerConditionRulesObj.notBrokerCollectionRules ==
true) {

2 fetchInstallmentGroup.entity.join
[0].entity.attributelist.push({

3 "name": "dueDate"
4 });
5 fetchInstallmentGroup.entity.join[0].entity.join

[1].entity.attributelist.push({
6 "name": "AccountId"
7 });
8
9

10 if
(brokerConditionRulesObj.brokerScopeDueInstallments =
true) {

11 fetchInstallmentGroup.where.expressionlist.push
({

12 "type": "and",
13 "conditionlist": [{
14 "first": "e.policyPaymentTypeId",
15 "type": "notequals",
16 "second": "val(" +

policyPaymentTypeBrokerCollection + ")"
17 }]
18 });
19 }
20
21 fetchInstallmentGroup.where.expressionlist.push({
22 "type": "and",
23 "conditionlist": [{
24 "first": "b.dueDate",
25 "type": "lte",
26 "second": "val(" + invariantDate + ")"
27 }]
28 });
29 }
30 if (brokerConditionRulesObj.pushInsuranceBroker == true)

{
31 fetchInstallmentGroup.entity.join[0].entity.join

[1].entity.attributelist.push({
32 "name": "insuranceBrokerId"
33 });
34 }

TABLE OF CONTENTS 172

BILLING AND COLLECTION USER GUIDE

After defining the structure of the fetch object, use it as a parameter for the
function responsible for getting the results. Next, store the result in a
variable:

1 var installmentGroupResult = getByQuery
(fetchInstallmentGroup)

For each installment of installmentGroupResult, take the values needed
and store them into statementInsertObj object in order to generate the
statement:

1 var statementId = insert('FTOS_PYMT_Statement',
statementInsertObj)

Based on the statementId, this changes the business status into
Generated.

Automatic Allocation
Bellow are the journeys, entities, libraries and endpoints related to the incoming
payments Automatic Allocation functionality. For incoming Payments Deallocation
scroll down or click the link.

Data Model
 l Entity FTOS_PYMT_Payment with all attributes.

 l Entity FTOS_PYMT_PaymentScheduleItemXPayment with all
attributes.

Payment Allocation

From the FTOS_PYMT_PaymentAllocation server side library, the following functions
are used for automatic payment allocation:

getPayment
This function gets the details of the payment to be allocated.

TABLE OF CONTENTS 173

BILLING AND COLLECTION USER GUIDE

Input parameters: paymentId - The Id of the payment.

Output parameters: payment[0] - Query result containing details of the
requested payment .

getReferenceValues
This function gets the reference values to be applied.

Input parameters:

 l payment - The selected payment.

 l processor - The selected processor.

Output parameters: result - Variable containing all references to be
applied.

getStatementsByConditions
This function gets the invoices that match the specified conditions, passed in
the input parameters.

Input parameters:

 l type - The type of payment.

 l whereValuesObj - An object with the values of the payment.

 l referenceCurrencyId - The Id for the payment currency, extracted
from the invoice reference.

Output parameters: result - Query result containing the invoices matching
the conditions.

getPoliciesByPolicyNo
This function gets a list of policies grouped by policy number.

Input parameters: policyNo - The policy number.

Output parameters: result - Query result containing the specified policies.

TABLE OF CONTENTS 174

BILLING AND COLLECTION USER GUIDE

checkEnforcedPolicy
This function verifies whether the status of a policy is contained into the
input parameter policyStatusCheck values.

Input parameters:

 l policy - The selected policy.

 l policyStatusCheck - The status of the selected policy.

Output parameters: true/ false .

checkUnpaidInstallments
This function gets the list of all unpaid installments for the specified policy.

Input parameters: policyId - The Id of the policy.

Output parameters: result - Query result containing the unpaid
installments for the policy.

applyPolicyRules
This function verifies whether the policy is eligible for automatic allocation.

Input parameters:

 l policyNo - The policy number.

 l processor - The selected processor.

Output parameters: true/ false.

findStatements
This function finds the invoices that comply with the references contained in
the processor input parameter.

Input parameters:

TABLE OF CONTENTS 175

BILLING AND COLLECTION USER GUIDE

 l payment - The selected payment.

 l processor - The selected processor.

Output parameters: statementsList - Query result containing a list of
invoices.

getStatement
This function gets details about the requested invoice.

Input parameters: statementId - The Id of the invoice.

Output parameters: statementList[0] - Query result.

getStatementDetail
This function verifies whether the installment unpaid amount is greater than
0.

Input parameters: statementDetailId - The Id of the invoice detail (only
the amount of the payment).

Output parameters: statementDetailList - Query result.

getStatementDetailList
This function gets the invoice details about unpaid installments.

Input parameters:

 l statementId - The Id of the invoice.

 l exceptStatementDetailId - The Id of the invoice detail for an
unpaid installment.

Output parameters: statementDetailList - The result of the query.

getStatementDetailInstallmentList
This function gets the list of installments.

TABLE OF CONTENTS 176

BILLING AND COLLECTION USER GUIDE

Input parameters: statementId - The Id of the invoice.

Output parameters: statementDetailList - The result of the query.

getDefaultExchangeRateType
This function gets the type of the default exchange rate.

Input parameters: N/A.

Output parameters: defaultExchangeRateType - The result of the query.

getExchangeRateId
This function gets the Id for the exchange rate.

Input parameters:

 l exchangeType - The exchange type for the payment.

 l fromCurrency -

 l toCurrency -

 l exchangeDate - The exchange date for the payment.

Output parameters: result - The result of the query.

insertAllocation
This function carries out the following actions:

 l Generates a statementPayment - that is a merger between the
invoice and the payment made for that invoice. The
statementPayment parameter contains the
statementPaymentDetail and the statementPaymentXPayment
values.

 l Updates the payment and the invoice amounts.

 l Inserts the allocation on the specified installment.

TABLE OF CONTENTS 177

BILLING AND COLLECTION USER GUIDE

 l Updates the remaining amounts, if the case.

 l Inserts statement details for the specified statement (invoice).

Input parameters:

 l payment - A payment.

 l statement - An invoice.

 l amount - The amount of the payment.

 l alocatedAmount - The allocated amount.

 l exchangeRateId - The Id of the exchange rate.

 l statementDetailId - The Id of the invoice detail.

Output parameters: statementPaymentId - The Id of the
statementPayment (invoice & payment merger).

getInstallmentItemList
This function gets the installment details for the specified installment.

Input parameters: installmentId - The Id of the installment.

Output parameters: fetchInstallmentItemList - Query result.

insertInstallmentItemAllocation
This function inserts a record into the FTOS_PYMT_
PaymentScheduleItemXPayment entity with the status Generated for the
references specified in the input parameter.

Input parameters: param

Output parameters: N/A.

insertAllocationStatementDetail

TABLE OF CONTENTS 178

BILLING AND COLLECTION USER GUIDE

This function inserts the invoice details and the FTOS_PYMT_
StatementPaymentDetailXPayment record, according to the allocated
amount and the installment unpaid amount.

Input parameters:

 l statementDetailList - The list containing the statement details.

 l amount - The amount of the payment.

 l statementPaymentId - The Id of the statementPayment (invoice &
payment merger).

 l payment - The selected payment.

Output parameters: N/A.

changeStatusStatementPayment
This function changes the status for the specified statementPayment (invoice
& payment merger).

Input parameters:

 l statementPaymentId - The Id of the statementPayment (invoice &
payment merger).

 l newStatus - The new business status of the installment.

Output parameters: N/A.

getInstallment
This function gets the data about the specified installment.

Input parameters: installmentId - The Id of the installment.

Output parameters: fetchResult[0] / null - The result of the query.

getCurrencyCode
This function gets the code of the specified currency.

TABLE OF CONTENTS 179

BILLING AND COLLECTION USER GUIDE

Input parameters: currencyId - The Id of the currency.

Output parameters: fetchResult[0].code / null - The result of the
query.

getToleranceValue
This function gets the specified tolerance value.

Input parameters:

 l processor - The selected processor.

 l currencyId- The Id of the currency.

Output parameters: result - Tolerance value for the requested currency.

getExchangeCalculationType
This function gets the type of calculation for the exchange rate.

Input parameters: processor - The selected processor.

Output parameters: exchangeCalculationType - The result of the query.

insertWriteOff
This function inserts the payment record containing the write-off value.

Input parameters:

 l writeOffAmount - The write-off amount.

 l statement - The selected invoice.

 l exchangeRateId - The Id of the exchange rate for the selected
currency.

Output parameters: paymentId - The Id of the payment.

checkStatement
This function verifies if the invoice is eligible for automatic allocation.

TABLE OF CONTENTS 180

BILLING AND COLLECTION USER GUIDE

Input parameters: statementId - The Id of the invoice.

Output parameters: true/ false.

automaticPaymentAllocation
This function verifies all the conditions and calls the insertAllocation
function.

Input parameters: paymentId - The Id of the payment.

Output parameters: N/A.

Payment Deallocation

Serve side functions used for automatic payment deallocation:

deallocateStatement
This function deallocates the allocated amount from the invoice and returns
it to the payment.

Input parameters:

 l statementId - The Id of the invoice.

 l paymentId - The Id of the payment.

Output parameters: N/A.

deallocateInstallments
This function updates the installment paid amount to 0.

Input parameters:

 l installmentId - The Id of the installment.

 l statementId - The Id of the invoice.

 l paymentId - The Id of the payment.

TABLE OF CONTENTS 181

BILLING AND COLLECTION USER GUIDE

Output parameters: N/A.

getExchangeRateValue
This function gets the exchange rate value for the specified payment.

Input parameters: exchangeRateId - The Id of the exchange rate for the
selected currency.

Output parameters: fetchResult[0].a_exchangeRate - The result of
the query.

getPayments
This function gets details about the specified payment.

Input parameters:

 l statementId - The Id of the invoice.

 l paymentId - The Id of the payment.

Output parameters: fetchResult - The query result containing details
about the requested payment.

getWOPayments
This function gets details about the specified write-off payment.

Input parameters:

 l statementId - The Id of the invoice.

 l statementNo - The invoice number.

Output parameters: fetchResult - The query result containing details
about the requested write-off payment.

deleteInstallmentItemAllocation

TABLE OF CONTENTS 182

BILLING AND COLLECTION USER GUIDE

This function deletes the afferent installment item allocation record from the
FTOS_PYMT_PaymentScheduleItemXPayment entity.

Input parameters: allocationId - The Id of the allocation record.

Output parameters: N/A.

deleteStatementPaymentDetailXPaymentAndSta
tementPaymentDetail

Input parameters:

 l statementId - The Id of the invoice.

 l paymentId - The Id of the payment.

 l tip -

Output parameters: N/A.

deleteStatementPaymentXPaymentAndStateme
ntPayment

This function

Input parameters:

 l statementId - The Id of the invoice.

 l paymentId - The Id of the payment.

 l tip

Output parameters: N/A.

deallocateStatementDetail
This function updates the invoice detail - the line containing the amount of
the payment.

Input parameters:

TABLE OF CONTENTS 183

BILLING AND COLLECTION USER GUIDE

 l statementDetailId - The Id of the invoice detail.

 l updateObj - An object containing the details for the update.

Output parameters: N/A.

deallocateStatementAmount
This function updates invoice to initial values.

Input parameters:

 l statementId - The Id of the invoice.

 l amountDeallocateFromStatement - The amount to be deallocated
from the invoice.

Output parameters: N/A.

deallocatePayments
This function updates payment to initial values.

Input parameters:

paymentId - The Id of the payment.

newRemainingPaymentAmount - The remaining amount of the payment.

newAllocatedAmount - The new allocated amount.

Output parameters: N/A.

getAllStatementDetailList
This function gets a list with invoice details - that is payment amounts.

 Input parameters: statementId - The Id of the invoice.

Output parameters: statementDetailList - The result of the query.

getStatementDetailForPaymentList

TABLE OF CONTENTS 184

BILLING AND COLLECTION USER GUIDE

This function gets a list with all the payments (from invoice details) to be
compared with the data from the payment list.

Input parameters:

statementId - The Id of the statement.

paymentId - The Id of the payment.

Output parameters: statementDetailList - The result of the query.

Manual Allocation
Here are the journeys, entities, libraries and endpoints related to the Manual
Allocation functionality:

Data Model
Entity FTOS_PYMT_Payment with all attributes. This entity stores payment
data from all FintechOS insurance solutions.

FTOS_PYMT_Payment_EditForm Journey

This is a user journey aimed at implementing the Manual Allocation functionality. This
journey is marked as Default for insert on FTOS_PYMT_Payment entity.

Search Statement: After clicking the Allocate button on the FTOS_PYMT_Payment_
EditForm, the Statement Search grid is displayed. Clicking the Search Statement
button returns data about an Installment or a Statement, based on the following
search parameters:

 l startDueDateFrom

 l startDueDateTo

 l firstName

 l statementAmount

 l lastName

TABLE OF CONTENTS 185

BILLING AND COLLECTION USER GUIDE

 l PaymentTypeSearchId

 l policyNo

 l currencyId

 l currencyName

NOTE
In order to perform a search the user must specify at least one parameter.

In order to show the results, we are using the following functions:

getInstallmentSearch
This function uses FTOS_AllocationInstallmentSearch automation
script to get installments based on search. Next, it uses the
generateCustomGrid function to return the results in a grid.

Input parameters: N/A.

Output parameters: Returns the fetch - installments to be allocated.

getStatementSearch
This function uses the FTOS_INSP_ManualAllocationSearch automation
script to get statements based on search. Next, it uses the
generateCustomGrid function to return the results in a grid.

Input parameters: N/A.

Output parameters: N/A.

generateCustomGrid
This function generates the grid that displays the results of the search.

Input parameters:

TABLE OF CONTENTS 186

BILLING AND COLLECTION USER GUIDE

 l viewId - (String) – The name of the CSS Id.

 l viewDataSource – (Object/JSON) – The data resulted from calling the
getInstallmentSearch or getStatementSearch() function.

 l viewColumns – (Variable) – The type of columns that are displayed in
the grid.

Output parameters: N/A.

generateCustomGridInstallments
This function generates the grid that displays the found installments.

Input parameters:

 l viewId - (String) – The name of the CSS Id.

 l viewDataSource – (Object/JSON) – The data result from the
getInstallmentSearch or getStatementSearch function.

 l viewColumns – (Variable) – The type of columns that are displayed in
the grid.

Output parameters: N/A.

allocateClickFunction
This function uses the FTOS_PYMT_ManualPaymentAllocation server
automation script in order to allocate the selected payment.

Input parameters: details – (Object) – The needed data from the
generateCustomGridInstallments function in order to manually
allocate a payment.

Output parameters: N/A.

In order to manually allocate a payment, the user clicks on the Add button next to the
desired Statement or Installment from the list.

TABLE OF CONTENTS 187

BILLING AND COLLECTION USER GUIDE

Server Automation Scripts

FTOS_AllocationInstallmentSearch
This script fetches the installments for the search made on the FTOS_PYMT_
Payment_EditForm form, after clicking on the Search Statement button.

The script contains the flowing functions:

getInstallmentSearchFetch
This function creates the fetch for the results.

Input parameters: N/A.

Output parameters: Returns the fetch.

addSearchConditionsInstallmentSearch
This function adds the search conditions from the input parameter
to the original fetch.

Input parameters: searchObj – (Object) – This object contains the
search values selected by the user in the front end.

Output parameters: Returns the fetch with the newly added
conditions.

FTOS_INSP_ManualAllocationSearch
This script fetches the statements for the search made on the FTOS_PYMT_
Payment_EditForm form, after clicking on the Search Statement button.

The script contains the flowing functions:

getStatementsSearchFetch
This function creates the fetch for the results.

Input parameters: N/A.

Output parameters: Returns the fetch.

TABLE OF CONTENTS 188

BILLING AND COLLECTION USER GUIDE

addSearchConditionsStatementSearch
This function adds, to the original fetch, the search conditions from
the input parameter.

Input parameters: searchObj – (Object) – This object contains the
search values selected by the user in the front end.

Output parameters: Returns the fetch with the newly added
conditions.

Server Automation Script Library

The FTOS_PYMT_PaymentAllocation_Manual library contains an object with the
following functions:

getPaymentAmount
This function fetches the payment.

Input parameters: paymentId – (variable) -The Id of the payment.

Output parameters: Returns the fetch.

getPaymentScheduleDetail
This function fetches the payment schedule.

Input parameters: installmentId – (variable) -The Id of the installment.

Output parameters: Returns the fetch.

insertStatementDetailForStatement
If there is an installment and the installment unpaid amount is greater than
0, then this function inserts the below object into the FTOS_PYMT_
StatementDetail entity. The object properties are:

TABLE OF CONTENTS 189

BILLING AND COLLECTION USER GUIDE

 l statementId,

 l installmentId,

 l insuranceProductId,

 l installmentUnpaidAmount,

 l dueDate,

 l policyId,

 l insuredId,

 l grossInstallmentAmount,

 l totalInstallmentAmount,

 l customerId.

Input parameters:

 l statementId – (variable) – The Id of the statement.

 l installments – (array) – An array with the installments.

Output parameters: N/A.

insertStatementForInstallment
If there is a statement and the installment unpaid amount is greater than 0,
then this function inserts the below object into the FTOS_PYMT_Statement
entity. The functions also calls the getPaymentScheduleDetail and
insertStatementDetailForStatement functions. Finally, it changes the
business status to Generated for the selected payment. The object properties
are:

 l statementType,

 l customerId,

TABLE OF CONTENTS 190

BILLING AND COLLECTION USER GUIDE

 l installmentsStartDate,

 l dueDate,

 l statementMonthId,

 l installmentsEndDate,

 l statementAmount,

 l statementDate,

 l unpaidAmount,

 l unconfirmedPayAmount,

 l confirmedPayAmount,

 l currencyId,

 l brokerId,

 l productId,

 l isGenerated,

 l expireDate,

 l paymentTypeId.

Input parameters: installmentId – (variable) – The Id of the installment.

Output parameters: If currency is missing , the output is an error message. If
currency is present and the sumInstallmentAmount is greater than 0, the
output is an object with the following properties:

 l statementId,

 l statementDetailId.

getRemainingInstallmentInPaymentCurrency

TABLE OF CONTENTS 191

BILLING AND COLLECTION USER GUIDE

This function returns the remaining installment amount in the payment
currency.

This function also uses the following libraries:

 l FTOS_PYMT_PaymentAllocation – To call the
getDefaultExchangeRate function from the Payment Allocation
object.

 l FTOS_INS_Exchange - To call the returnExchangeRate function
from the Exchange object.

Input parameters:

 l amount – (variable) – The amount of the installment.

 l installmentCurrency – (variable) – The installment currency.

 l paymentCurrency – (variable) – The payment currency.

 l date – (variable) – Not used.

Output parameters: Remaining installment amount, in payment currency.

getAmountInPaymentCurrency
This function returns the installment amount in the payment currency.

This function also uses the following libraries:

 l FTOS_PYMT_PaymentAllocation – To call the
getDefaultExchangeRate and the
getExchangeCalculationType functions from the Payment
Allocation object.

 l FTOS_DFP_FlowProcessorSettings – To call the
getFlowProcessorSettingsByTypefunction from the Flow Setting
object.

 l FTOS_INS_Exchange - To call the returnExchangeRate function
from the Exchange object.

Input parameters:

TABLE OF CONTENTS 192

BILLING AND COLLECTION USER GUIDE

 l amount – (variable) – The amount of the installment.

 l installmentCurrency – (variable) – The installment currency.

 l paymentCurrency – (variable) – The payment currency.

 l paymentDate – (variable) – The payment date.

 l statementDate – (variable) – The statement date.

Output parameters: Returns the installment amount in payment currency.

allocatePaymentOnInstallment
This function allocates a payment for an installment. First the statement is
generated and then the payment is allocated. If the payment is greater than
the installment, the remaining amount can be manually allocated to other
installments.

This function also uses the following libraries:

 l FTOS_PYMT_PaymentAllocation – To call the getPayment,
getStatement, getDefaultExchangeRateType and
insertAllocation functions from the Payment Allocation object.

 l FTOS_INS_Exchange - To call the returnExchangeRate function
from the Exchange object.

Input parameters:

 l installmentId – (variable) – The Id of the installment.

 l paymentId – (variable) – The Id of the payment.

 l statementId – (variable) – The Id of the statement.

 l statementDetailId – (variable) – The statement detail id.

Output parameters: N/A.

getExchangeRateDetails
This function returns the exchange rate details.

TABLE OF CONTENTS 193

BILLING AND COLLECTION USER GUIDE

This function also uses the following libraries:

 l FTOS_PYMT_PaymentAllocation – To call the
getDefaultExchangeRateType and
getExchangeCalculationType functions from the Payment
Allocation object.

 l FTOS_DFP_FlowProcessorSettings – To call the
getFlowProcessorSettingsByType function from the Flow Setting
object.

 l FTOS_INS_Exchange - To call the returnExchangeRate function
from the Exchange object.

Input parameters:

 l paymentDate – (variable) – The payment date.

 l paymentCurrencyId – (variable) – The payment currency id.

 l statementDate – (variable) – The statement date.

 l statementCurrencyId – (variable) – The statement currency id.

Output parameters: The exchange rate for the selected payment.

allocatePaymentOnStatement
This function allocates a payment on a statement.

This function also uses the FTOS_PYMT_PaymentAllocation library to call the
getPayment, getStatement, getDefaultExchangeRateType and
insertAllocation functions from the Payment Allocation object.

Input parameters:

 l paymentId – (variable) – The Id of the payment.

 l statementId – (variable) – The Id of the statement.

Output parameters: N/A.

TABLE OF CONTENTS 194

BILLING AND COLLECTION USER GUIDE

SEPA Direct Debit
This functionality handles the direct debit payment operations for SEPA area.

SEPA refers to the Single Euro Payments Area - a payment scheme which facilitates
cashless payments (bank transfers via credit transfer and direct debit) anywhere
inside the European Union.

Below are the journeys, entities, libraries and scripts related to this functionality:

Digital Journeys

Entity FTOS_PYMT_DirectDebitNotification
Journey DirectDebitNotification

After uploading and importing the data from the Notification file, the user is
redirected to the direct debit mandate Registration form. This form has to
steps(tabs). In the first tab, the user finds information about the notification
file - the name of the file and the import date. In the second tab, the user can
see the direct debit mandates buffer activated by that specific notification
file.

Journey DirectDebitNotificationInsert

This is a user journey aimed at implementing the Notification Manual Insert
functionality. The journey has a form that allows the user to upload a
Notification file by pressing the Import Data button.

Entity FTOS_PYMT_DirectDebitMandate
Journey FTOS_PYMT_DirectDebitMandate

This form is used to see all the details about the direct debit mandates
registered, on step 1 and the history of changes logged on the selected
mandate, on step 2. Also, the form allows the user to manually select and
cancel an Active mandate, by using the Cancel Mandate button.

Entity FTOS_PYMT_DirectDebitMandateBuffer

TABLE OF CONTENTS 195

BILLING AND COLLECTION USER GUIDE

This form is used to see all the details related to the direct debit mandates
from the imported file.

Entity FTOS_PYMT_DirectDebitConfirmation
View Default

This view allows the user to see the list of all the direct debit payments files
ever uploaded in the system. From this view, the user double-clicks the
FTOS_PYMT_DirectDebitConfirmation in order to see the details of the
selected record.

Journey FTOS_PYMT_DirectDebitConfirmationInsert form

This insert form allows the user to manually upload a file containing direct
debit payments (not confirmed yet) by pressing the Import Data upload
button.

Journey FTOS_PYMT_DirectDebitConfirmation form

After uploading and importing the data from the file, the user is redirected to
this form which represents the confirmation of registering new direct debit
mandate payments in the system. This form has to steps (tabs). In the first
tab, the user finds the file confirmation details: the name of the file and the
import date. In the second tab, the user has a view of the payments
contained by that specific file.

Entity FTOS_PYMT_
DirectDebitConfirmationDetail

Journey DirectDebitConfirmationDetail _ReadOnly form

This form is used to see all the details about the payments confirmation
records from the payments confirmation file.

View Default

This view displays the list of payments confirmation files. From this view, the
user can select any file, by double-clicking the DirectDebitConfirmationDetail
_ReadOnly form, in order to see the file details.

Entity FTOS_PYMT_DIDE

TABLE OF CONTENTS 196

BILLING AND COLLECTION USER GUIDE

Journey FTOS_PYMT_DIDEReadOnly form

This form displays details (file name and date of generation) about the DIDE
instruction files generated by the FTOS_PYMT_DIDEInstructionFile scheduled
job. Also, from this form the user can download the generated file.

View FTOS_PYMT_DIDEReadOnly

This view displays the list of all the DIDE instruction files generated by the
FTOS_PYMT_DIDEInstructionFile scheduled job. From this view, the user can
select any file, by double-clicking the FTOS_PYMT_DIDEReadOnly form, in
order to see the file details.

On Demand Server Automation Scripts

FTOS_PYMT_DirectDebitNotification_File_
Validation

On demand script that is triggered when a file is uploaded during the
DirectDebitNotificationInsert journey. After the user presses the Import
Data button, the script validates that the file is in .txt format. The script also
restricts the upload to only one file.

Input parameters: file - The DIDE payments file that needs to be uploaded.

Output parameters: fileValidation (boolean) - The result of the
validation (true/ false).

FTOS_PYMT_DirectDebitMandateStatusChange
This on demand script calls the changeMandateBusinessStatus
(mandateId) function from FTOS_PYMT_Mandate server side library. The
mandateId parameter is passed as null value in order to run the status
changes for all the mandates.

Input parameters: N/A.

Output parameters: N/A.

FTOS_PYMT_DIDEInstructionFile

TABLE OF CONTENTS 197

BILLING AND COLLECTION USER GUIDE

This on demand script calls the runDIDEInstructionFile function from
the FTOS_PYMT_DIDE server side script library, in order to generate the
payment instructions file for the direct debit mandates.

Input parameters: N/A.

Output parameters: N/A.

FTOS_PYMT_DirectDebitMandate_
cancelMandate

This on demand script calls the changeBusinessStatus function, in order
to apply the Cancelled business status to the selected record.

Input parameters:

recordID - Where the recordID is the mandateId. This parameter is
passed from the context of the client-side process that called this script.

statusID = cancelled - The value to be set for the mandate business
status.

Output parameters: N/A.

Business Workflow Configuration Actions

FTOS_PYMT_DirectDebitMandate is the master business workflow that handles the
different types of changes affecting a direct debit mandate during its lifetime. For
more details about the mandate behavior, its states and the business workflow
diagram consult the Direct Debit page.

Transition Description
_Proposal Initial state.

Active_Cancelled When the system registers a notification about
the mandate cancellation.

Active_Expired

When the mandate reaches its end day. The
expiration triggers the automatic change of the
payment type on the policy, from Direct Debit to
Bank Transfer (OP).

Active_VersionClosed When a version of the mandate is closed. Used
for mandate versioning.

Approved_Active When the mandate reaches its start day.

TABLE OF CONTENTS 198

BILLING AND COLLECTION USER GUIDE

Transition Description

Approved_Draft
When a change of the policy payment type from
Bank Transfer (OP) into Direct Debit is
performed on a policy.

Approved_Expired When the number of days for the activation of a
mandate were exhausted.

Draft_Active

When the mandate reaches its start day.
This transition is triggered automatically by a
specific job that verifies if the current date is the
mandate begin date and changes the status to
Active for all eligible mandates.

Draft_Cancelled When the system registers a notification about
the mandate cancellation.

Draft_Expired

When the number of days for the activation of a
mandate were exhausted. The expiration
triggers the automatic change of the payment
type on the policy, from Direct Debit to Bank
Transfer (OP).

Draft_Pending
After the instruction file for the mandate's
activation is generated, and the mandate is
pending approval from the bank.

Draft_VersionDraft When the mandate versioning process starts.
Pending_Active When the mandate reaches its start day.

Pending_Cancelled
When the system registers a notification about
canceling the mandate, or a user manually
cancels the mandate.

Proposal_Active When the mandate reaches its start day.

Proposal_Draft
When the mandate is registered in the system
but it is not activated yet, or its begin date is yet
to come.

Proposal_Expired When the number of days for the activation of a
draft mandate were exhausted.

VersionDraft_Approved When a version of the mandate is approved.
Used for mandate versioning.

VersionDraft_VersionUnapproved When the opened version is not approved. Used
for mandate versioning.

HINT
To check out this business workflow open the Innovation Studio and go to Fintech
Automation >> Business Workflow Designer. For more details, consult also the
Business Workflow Design documentation.

TABLE OF CONTENTS 199

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/APs/BusinessWorkflowsProcessor/21.1.0/UserGuide/Content/Configuration/AddBusinessWorkflow.htm

Endpoints

FTOS_PYMT_DirectDebitMandate_cancelMandate

This endpoint calls the FTOS_PYMT_DirectDebitMandate_cancelMandate script to
change the mandate business status into Cancelled, when clicking the Cancel
Mandate button.

Processors

The FTOS_PYMT_DIDEProcessor is used for setting the following parameters:

DideConfiguration
This is an object containing the following settings:

 l numberOfDaysInAdvance - This parameter sets the date for invoice
generation with N days before the payment due date (for example, the
invoice can be generated with 3 or 5 or 10 days before the payment
due date).

 l runningOnBankHolidays - This parameter determines whether the
DIDE instruction file is generated on bank holidays or not (true or
false). Set to true if the DIDE instruction file is to be generated on a
bank holiday.

 l excludeWeekDays - This parameter defines the week days in which
the DIDE instruction file is not generated (for example, the invoice is
not generated on Saturday or Sunday).

 l type - This parameter sets the type of direct debit processing: either
SEPA (for European area) or UK.

If the type option configured in the processor is Sepa - the DIDE process will
take in consideration the functionality implemented for DIDE Sepa.
Otherwise, the DIDE process will take into consideration the flow
implemented for DIDE UK.

Sequencers

FTOS_PYMT_DIDE sequencer

TABLE OF CONTENTS 200

BILLING AND COLLECTION USER GUIDE

This sequencer is used to set the Order Number value used for generating DIDE
instruction files.

 l Range Min = 1

 l Range Max = 999,999,999

Server Side Script Libraries

FTOS_PYMT_Mandate
From the FTOS_PYMT_Mandate library, the following functions are used:

PYMT_Buffer
This function wraps a series of functions which perform actions on
the FTOS_PYMT_DirectDebitMandateBuffer entity or interpret data
received by it. Inside the PYMT_Buffer function, the following
functions are used:

updateBufferMandateId
This function updates the directDebitMandateId
attribute on a buffer that triggers an action for a mandate
(insertion, deletion or modification).

Input parameters:

 l bufferId - The Id of the buffer on which the update
needs to be implemented.

 l mandateId - The Id of the mandate on which the
buffer performed the specified action.

Output parameters: N/A.

performActionsOnMandate

TABLE OF CONTENTS 201

BILLING AND COLLECTION USER GUIDE

This function detects the type of action that the buffer
needs to perform on a mandate, based on the stageId that
the buffer has. If there is no stageId set on the buffer, the
function throws an exception, with an error message.

Input parameters: bufferObj - The object containing the
data added in the buffer.

Output parameters: mandateId - The Id of the mandate
which was created, modified, or cancelled.

PYMT_Mandate
Inside the PYMT_Mandate function, the following functions are
used:

getMandateStage
This function gets the stage of the mandate - that is
whether the mandate is N(New), M(Modified) or D
(Deleted).

Input parameters: mandateId - The mandate unique
identifier.

Output parameters: N/A.

changeMandateBusinessStatus
This function updates the mandate business status
according to the logic from the
getMandateNewBusinessStatus function (see below).

Input parameters: mandateId - The mandate unique
identifier.

Output parameters: N/A.

TABLE OF CONTENTS 202

BILLING AND COLLECTION USER GUIDE

updateMandateBusinessStatusId
This function updates the mandate business status.

Input parameters:

 l mandateId - The mandate unique identifier.

 l statusId - The business status unique identifier.

Output parameters: N/A.

getMandateNewBusinessStatus
This function returns the Id of the new business status
according to the logic between begin date, end date and
current date.

Input parameters:

 l beginDate - The beginning date for the mandate.

 l endDate - The ending date for the mandate.

Output parameters: Returns the newBusinessStatusId.

getMandateDetailsByReference
This function returns the mandate details based on the
reference.

Input parameters: reference - The mandate reference
(expected policy number).

Output parameters: Returns the fetch.

changeMandateStatusCancelled

TABLE OF CONTENTS 203

BILLING AND COLLECTION USER GUIDE

This function updates the mandate business status to
Cancelled.

Input parameters:

 l mandateRef - The mandate reference (expected
policy number).

 l stageId - The mandate stage.

Output parameters: N/A.

getCurrencyIdByCode
This function returns the Id of the currency based on the
code.

Input parameters: currencyCode - The currency code.

Output parameters: The currencyId or null.

deleteMandateFromBuffer
This function executes the following:

 l It updates the business status of the mandate to
Cancelled.

 l It updates the stageId attribute to the one received
from the buffer.

 l It calls the updateBufferMandateId function to
update the directDebitMandateId attribute of
the buffer.

 l If no mandate is found based on the reference, the
function throws an error.

Input parameters: bufferObj - The object containing the
data added in the buffer.

TABLE OF CONTENTS 204

BILLING AND COLLECTION USER GUIDE

Output parameters: mandateId - The Id of the cancelled
mandate.

formatDateWithOffset
This function receives a date in a string format. Next, the
function converts the date to a date object, with the
correct server time.

Input parameters: date - The string containing a date.

Output parameters: dateWithOffset - The date object.

addMandateFromBuffer
This function executes the following:

 l It inserts a new mandate record, filling in with the
data received from the buffer.

 l It also calls the updateBufferMandateId function
to update the directDebitMandateId attribute of
the buffer.

 l If a mandate with the same reference from the data
object already exists in the system, the function
throws an error.

Input parameters: bufferObj - The object containing the
data added in the buffer.

Output parameters: mandateId - The Id of the newly
created mandate.

getMandateLastVersion

TABLE OF CONTENTS 205

BILLING AND COLLECTION USER GUIDE

This function fetches from the FTOS_PYMT_
DirectDebitMandate entity the Id of the last version for a
specified mandate.

Input parameters: mandateId - The Id of the mandate for
which the last version was requested.

Output parameters: buffers - The mandate list that has
been found.

modifyMandateFromBuffer
This function executes the following:

 l Creates a new version for a mandate with a specific
reference.

 l Updates the mandate with the new data received
from the buffer.

 l Changes the business status of the new version,
depending on the beginDate and endDate
attributes.

 l Changes the business status of the old version of the
mandate with the versionClosed status.

 l Calls the updateBufferMandateId function to
update the directDebitMandateId attribute of
the buffer.

Input parameters: bufferObj - The object containing the
data added in the buffer.

Output parameters: mandateId - The Id of the newly
modified mandate.

changeBusinessStatusSEPA

TABLE OF CONTENTS 206

BILLING AND COLLECTION USER GUIDE

This function changes the business status for SEPA
mandates.

Input parameters: N/A.

Output parameters: N/A.

changeSingleMandateStatus
This function changes the business status of the specified
mandate.

Input parameters: mandateId - The Id of the mandate.

Output parameters: N/A

getSEPAMandates
This function returns all the SEPA mandates that are in
Draft, Active or Expired business status.

Input parameters: N/A.

Output parameters: The query object.

getMandateDetailsById
This function gets the details of the specified mandate.

Input parameters: mandateId - The id of the mandate.

Output parameters: The query object.

FTOS_PYMT_DirectDebitMandateConfirmation
From the FTOS_PYMT_DirectDebitMandateConfirmation library, the
following functions are used:

TABLE OF CONTENTS 207

BILLING AND COLLECTION USER GUIDE

addPaymentConfirmation
This function inserts a payment confirmation record into the FTOS_
PYMT_DirectDebitMandateConfirmation entity.

Input parameters: input - The object containing details about the
new payment confirmation.

Output parameters: directDebitMandateConfirmationId -
The Id of the newly inserted payment confirmation.

dbTaskPaymentConfirmation
This function saves the contents of the uploaded payments
confirmation file.

Input parameters:

 l fileArr - The object containing the payments confirmation
file.

 l confirmationObj - The object containing the Id of the new
file inserted and details about the user who performed the
insert of the file.

Output parameters: N/A.

Also, inside this function, the following functions are used:

 l getTabularDataFromFile - To get data from the payments
confirmation file.

 l saveToTemporaryTable - To save the values in a temporary
table called DirectDebitConfirmationTempTable.

The contents of the file are saved with the FTOS_
InsertDirectDebitConfirmationDetail stored procedure which
returns an array of payments confirmation from the FTOS_PYMT_
DirectDebitConfirmationDetail entity.

FTOS_PYMT_DIDE

TABLE OF CONTENTS 208

BILLING AND COLLECTION USER GUIDE

This server side script library contains methods that help in the process of
generating a direct debit payments instruction file for both SEPA and UK
types.

From the FTOS_PYMT_DIDE library, the following functions are used:

General
Inside the General() function, the following functions are used:

isNullOrEmpty
This function verifies if an input value is null or empty.

Input parameters: value - The value that needs validation.

Output parameters:true/ false - The result of the
validation.

 formatDateForFile
This functions transforms the format of an input date to
the ddmmyy format. Next, it adds a number of days to the
received date.

Input parameters:

date

noOfDays - How many days to add to the date received as
an input.

Output parameters: Date formated.

getProcessorValues
This function returns the static values stored in the FTOS_
PYMT_DIDEProcessor processor.

Input parameters: setting - The processor’s object key
name.

TABLE OF CONTENTS 209

BILLING AND COLLECTION USER GUIDE

Output parameters: The object containing values from the
processor:

 l destinationSort

 l destinationAcct

 l destinationType

 l usersName

 l transaction

 l freeFormat

 l amount

DIDE
This function wraps a series of functions which perform actions on
the FTOS_PYMT_DIDE and FTOS_PYMT_DIDEDetail entities,
generate and validate some data or generate .txt files, as follows:

runDIDEInstructionFile
This function executes the following:

 l Verifies that the DIDE instruction file can be
generated according the rules defined in the FTOS_
PYMT_DIDEProcessor processor
(runningOnBankHolidays,
numberOfDaysInAdvance, and
excludeWeekDays).

 l Generates the details needed for the file type
wanted.

TABLE OF CONTENTS 210

BILLING AND COLLECTION USER GUIDE

 l Saves the statementId and
directDebitMandateId details into the FTOS_
PYMT_DIDEDetail entity.

 l Saves the directDebitMandateId details in FTOS_
PYMT_DIDEMandateInstructionDetail entity,
according to the file type.

 l Generates the .txt file.

 l Saves the file into the FTOS_PYMT_DIDE entity or
into the FTOS_PYMT_DIDEMandateInstruction
entity.

 l It also saves the file on the server UploadEBS folder.

This function also uses all the functions mentioned below.

Input parameters: instructionFileType - Optional
parameter. This parameter has two possible values:

 1. statements - for files dealing with payments -
DIDEPaymentsInstructionFile (for SEPA) and,
respectively, DD_BACSPayments file (for UK).

 2. mandates - for files dealing with creation of new
DIDE mandates - NEW_DIDE_Mandates_
BACSInstructions file (for UK).

Output parameters: N/A.

getProcessorDetails
This function gets the configuration details of a processor.

Input parameters:

TABLE OF CONTENTS 211

BILLING AND COLLECTION USER GUIDE

 l flowSettingsName - The name of the flow setting.

 l processorSettingsType - The type of the Digital
Processor Type.

 l processorSettingsName - The name of the
processor setting.

Output parameters: processorDetails - An object
containing the processor settings
runningOnBankHolidays, excludeWeekDays and
numberOfDaysInAdvance.

getDayName
This function returns the name of a weekday (ex. Monday).

Input parameters: date - The date parameter.

Output parameters: dayName - The name of the week day.

getDIDERunningDay
This function verifies if the current day is a bank holiday or
a day defined in the FTOS_PYMT_DIDEProcessor. If one
condition is meet the function returns a true value.

Input parameters: settings - The object with the
processor settings - runningOnBankHolidays,
excludeWeekDays and numberOfDaysInAdvance.

Output parameters: True or false.

getDraftMandates
This function is specific for DIDE UK. It returns all the UK
direct debit mandates in Draft status.

TABLE OF CONTENTS 212

BILLING AND COLLECTION USER GUIDE

Input parameters: mandateTypeUk - The mandateTypeId
has the UK value.

Output parameters: Returns the query result.

getPolicyDataAPI
This function is specific for DIDE UK. This function imports
the FTOS_PYMT_GetPolicyDataAPI library in order to call
the FTOS_GetPolicyData_API API. The function sends an
object containing a list of policies as mandates references
(where the reference is the policy number) and receives
the information about the specified policies, in return. This
function also parses the result.

Input parameters: mandateObj - The list of policies.

Output parameters: Information result about the specified
policies.

getStatementsDetails
This function returns statements (invoices) to be included
in the DIDE instruction file, based on the following
conditions:

 l businessStatus of the statement = Generated

 l paymentType of the statement = directDebit

 l businessStatus of the direct debit mandate =
active

 l scheduledDate of the statement = null

 l dueDate of the statement <= current date +
numberOfDaysInAdvance

TABLE OF CONTENTS 213

BILLING AND COLLECTION USER GUIDE

 l businessStatus of the policy = Enforced or
Suspended

 l mandateTypeId = SEPA or UK

Input parameters:

 l numberOfDaysInAdvance - The number of days in
advance for generating an invoice (for a policy
installment), before the due date for the payment.

 l mandateTypeId = SEPA or UK

Output parameters: resultStatements - Returns the
fetch.

processPaymentsInstructionSepa
This function is specific for SEPA direct debit.

This function executes the following:

 l Inspects the results of the getStatementsDetails
function.

 l Inserts the statementId,
directDebitMandateId, and name details into the
FTOS_PYMT_DIDEDetail entity.

 l Populates the CSVContentArray with all the details
necessary for the generation of the DIDE instruction
file.

 l Updates the scheduledDate from the FTOS_PYMT_
Statement entity.

Input parameters:

TABLE OF CONTENTS 214

BILLING AND COLLECTION USER GUIDE

 l result - The fetch result of the
getStatementsDetails
(numberOfDaysInAdvance, mandateTypeId)
function.

 l CSVContentArray - An empty array.

Output parameters: N/A.

processMandatesBACSInstructionUk
This function is specific for DIDE UK. This function executes
the following:

 l Inspects the results of the query mandates.

 l Inserts the directDebitMandateId details into the
FTOS_PYMT_DIDEMandateInstructionDetail entity.

 l Populates the CSVContentArray with all the details
necessary for the generation of the mandate
instruction file.

 l Sets the beginDate on the specified mandates.

 l Sets the status on the mandates to Active.

In the CSVContentArray file, the information is
concatenated as follows:

 l First column: destination sort + destination acct +
destination type + transaction + bank Sort Code +
account number.

 l Second column: free format + amount + users name.

 l Third column: reference + payer last name.

 l Fourth column: BACS Processing day.

TABLE OF CONTENTS 215

BILLING AND COLLECTION USER GUIDE

Input parameters:

 l resultMandates - The mandates that respect all
conditions for being included in the file.

 l CSVContentArray - An empty array.

Output parameters: N/A.

processPaymentsInstructionUK
This function is specific for DIDE UK. This function executes
the following:

 l Inspects the results of the getStatementsDetails
function.

 l Inserts the statementId,
directDebitMandateId, and name details into the
FTOS_PYMT_DIDEDetail entity.

 l Populates the CSVContentArray with all the details
necessary for the generation of the UK_DIDE
instruction file.

 l Updates the scheduledDate from the FTOS_PYMT_
Statement entity

In the CSVContentArray file, the information is
concatenated as follows:

 l First column: destination sort + destination acct +
destination type + transaction + bank Sort Code +
account number.

 l Second column: free format.

 l Third column: amount + users name.

TABLE OF CONTENTS 216

BILLING AND COLLECTION USER GUIDE

 l Fourth column: reference + payer last name.

 l Fifth column: BACS Processing day.

Input parameters:

 l result - The fetch result of the
getStatementsDetails
(numberOfDaysInAdvance, mandateTypeId)
function.

 l CSVContentArray - An empty array.

Output parameters: N/A.

getInstallmentNo
This function is specific for DIDE UK. This function returns
the installment number for an invoice reference, received
as parameter.

Input parameters: statementReference - The invoice
reference.

Output parameters: Returns the query result.

generatePaymentsInstructionFile
This function executes the following:

 l Generates the .txt DIDE instruction file based on
csvContentArray populated by the
processPaymentsInstruction(result,
csvContentArray) function.

 l Saves the file into FTOS_PYMT_DIDE entity.

TABLE OF CONTENTS 217

BILLING AND COLLECTION USER GUIDE

 l Saves the file on the UploadEBS folder from the
portal.

Input parameters:

csvContentArray - The array with all the records for
direct debit instructions.

instructionFileType - Optional parameter, with two
possible values: 1. statements for
DIDEPaymentsInstructionFile (SEPA) and DD_
BACSPayments (UK) file and 2. mandates for NEW_DIDE_
Mandates_BACSInstructions file (UK).

Output parameters:

idInstructionFile - The Id of the new file inserted in
FTOS_PYMT_DIDE entity or FTOS_PYMT_
DIDEMandateInstruction entity.

entityName - FTOS_PYMT_DIDE - for
DIDEPaymentsInstructionFile (SEPA) and DD_
BACSPayments (UK) file OR FTOS_PYMT_
DIDEMandateInstruction for the NEW_DIDE_Mandates_
BACSInstructions file (UK).

updateDIDEDetails
This function searches all the records from FTOS_PYMT_
DIDEDetail or FTOS_PYMT_DIDEMandateInstructionDetail
entities (depending on the file type) which have dideId (id
of the file) with nullvalues and updates them with the id
of the recently generated file.

Input parameters:

TABLE OF CONTENTS 218

BILLING AND COLLECTION USER GUIDE

 l instructionFileObj -

 l instructionFileId - The id of the new generated
file and entityName - the name of the entity.

Output parameters: N/A

FTOS_PYMT_DirectDebitDenied
From the FTOS_PYMT_DirectDebitDenied library, the following functions are
used.

PYMT_DirectDebitDenied
This function wraps smaller functions which perform actions
necessary for the process of importing the payments denied file in
the system.

updateMandateStatusCancelled
This function updates the status of the mandates found by
the getMandateDetailsByReference function to
Cancelled.

Input parameters: operationReference - The reference
of a mandate.

Output parameters: N/A.

getStatementIdFromPolicyNo
This function fetches the statements (invoices) with the
Generated or Unpaid business statuses from a policy,
selected by its specific policy number.

Input parameters: policyNo - The number of the policy.

TABLE OF CONTENTS 219

BILLING AND COLLECTION USER GUIDE

Output parameters: statements - The list of the
statements (invoices) found.

updateStatementsScheduleDate
This function updates the scheduledDate attribute of a
statement (invoice).

Input parameters: policyNo - The number of the policy.

Output parameters: N/A.

dideDeniedFileUpdates
This function updates the mandates and the statements (invoices)
found based on the operation references received inside an object.

Input parameters: dideDeniedDetails - The object containing
the operation references.

Output parameters: N/A.

Scheduled Jobs

FTOS_PYMT_DirectDebitMandateStatus
This job is scheduled to run every day at 5:00 AM, to update mandate
statuses according to the begin date and end date of the mandates.

Schedule Services: FTOS_PYMT_DirectDebitMandateStatusChange - on
demand server automation script.

FTOS_PYMT_DIDEInstructionFile

TABLE OF CONTENTS 220

BILLING AND COLLECTION USER GUIDE

The job is scheduled to run every day at 3:00 AM to generate the .txt
instruction file. Depending on the configuration, it generates the
DIDEPaymentsInstructionFile (for SEPA) and DD_BACSPayments (for UK),
also.

Schedule Services: FTOS_PYMT_DIDEInstructionFile - on demand server
automation script.

UK Direct Debit
This functionality handles the direct debit payment operations for UK area.

Below are the journeys, entities, libraries and scripts related to this functionality:

Digital Journeys

Entity FTOS_PYMT_DIDE_ADDACS
Journey DirectDebitADDACS

After importing the data from the ADDACS file, the user is redirected to this
form. This form has to steps (tabs). In the first tab, the user finds information
about the ADDACS file - the name of the file and the import date. In the
second tab, the user can see the direct debit mandates details contained by
that specific ADDACS file.

The form also allows the user to make changes related to the business status
of the direct debit mandates. According to the updates received through the
ADDACS file, the user can cancel, modify or reactivate existing mandates.
However, these modifications can only be performed if the effective date of
the record is equal with import date of the file.

NOTE
 The generation of a new UK direct debit mandate can be done only
through FTOS_PYMT_GenerateMandate endpoint which is described in
the Generate UK Direct Debit Mandate API page.

Journey DirectDebitADDACSInsert

TABLE OF CONTENTS 221

BILLING AND COLLECTION USER GUIDE

This form is used to manually upload an ADDACS file, by pressing the Import
Data upload button.

Entity FTOS_PYMT_DirectDebitMandate
Journey FTOS_PYMT_DirectDebitMandateInsert

This form is used to manually add a DIDE Mandate in the system for both
SEPA and UK, so that Direct Debits can be set up for a policy. By pressing the
Insert button, the specific Mandate form will be opened according to the
DIDE type set in the Direct Debit processor.

Journey FTOS_PYMT_DirectDebitMandate_UK

This form is used to see all the details about the UK direct debit mandates
registered - on step 1 and the history of changes for a mandate - on step 2.

Entity FTOS_PYMT_DIDE_ADDACSDetail
This form is used to see all the details related to the direct debit mandates
from the imported ADDACS file. On this page, this entity is further called
buffer.

Entity FTOS_PYMT_DIDE
View FTOS_PYMT_DIDEReadOnly

This view displays the list of all the DIDE UK payments instruction files
generated by the FTOS_PYMT_DIDEInstructionFile scheduled job. From this
view, the user can select any file, by double-clicking the FTOS_PYMT_
DIDEReadOnly form, in order to see the file details.

Journey FTOS_PYMT_DIDEReadOnly form

This form displays the details (file name and date of generation) of the DIDE
UK payments instruction files generated by the FTOS_PYMT_
DIDEInstructionFile scheduled job. Also, from this form the user can
download the generated file.

Entity FTOS_PYMT_ARUDD

TABLE OF CONTENTS 222

BILLING AND COLLECTION USER GUIDE

View Default

This view allows the user to see the list of all the UK direct debit payments
files ever uploaded in the system. From this view, the user double-clicks the
FTOS_PYMT_ARUDD form in order to see the details of the selected record.

Journey FTOS_PYMT_ARUDDInsert form

This insert form allows the user to manually upload a file containing direct
debit payments (not confirmed yet) by pressing the Import Data upload
button.

Journey FTOS_PYMT_ARUDD form

After uploading and importing the data from the ARUDD file, the user will be
redirected to this form which represents the registration of the unconfirmed
payments of direct debit mandates.

This form has to steps (tabs). In the first tab, the user finds the file
confirmation details: the name of the ARUDD file and the import date. In the
second tab, the user has a view of the payments contained by that specific
ARUDD file.

Entity FTOS_PYMT_ARUDDDetail
View Default

This view displays the list with some details for all the records from the
unconfirmed payments file (the ARUDD file). From this view, the user double-
clicks the FTOS_PYMT_ARUDDDetail_ReadOnly form in order to see the
details of the selected record.

Journey FTOS_PYMT_ARUDDDetail_ReadOnly form

This form is used to see all the details about the unconfirmed payments from
the ARUDD file.

Entity FTOS_PYMT_AUDDIS
Journey DirectDebitAUDDISInsert

TABLE OF CONTENTS 223

BILLING AND COLLECTION USER GUIDE

 This form is used to manually upload an AUDDIS file by pressing the Import
Data button. The Import Date is read-only and is automatically completed
after the import process.

Journey DirectDebitAUDDIS

After uploading the AUDDIS file, the user will be redirected to another form
that contains the import date and the file name, on the first tab and all the
records from the imported file, on the second tab.

If all the data from the file has been successfully imported, the correlated
mandates will transition to the Cancelled business status only if they were in
the Active or in Pending statuses. Aadditionally, all the invoices from the
policies which the mandates refer to, will be cancelled.

Entity FTOS_PYMT_AUDDISDetail
This entity is used to save all the records from the imported file with details
about the direct debit mandates.

Journey FTOS_PYMT_AUDDISDetail_ReadOnly

If the user clicks on any of the records visible in the second tab of the
DirectDebitAUDDIS form, a new form opens. This form contains all the
information for a particular mandate, imported from the file. As the name
suggests, all the fields are in a read-only state. By clicking on the View
Mandate button, the user will be redirected to the actual mandate page.

Entity FTOS_PYMT_DIDEMandateInstruction
View default

This view displays the list of all the DIDE UK mandate instruction files
generated by the DIDEUK_Instructions scheduled job. From this view, the
user double-clicks the FTOS_PYMT_DIDEMandateInstructionReadOnly form
in order to see the details of the selected record.

Journey FTOS_PYMT_DIDEMandateInstructionReadOnly form

TABLE OF CONTENTS 224

BILLING AND COLLECTION USER GUIDE

This form displays the details (file name and date of generation) of the DIDE
UK mandate instruction files generated by the DIDEUK_Instructions
scheduled job. Also, from this form the user can download the generated file.

On Demand Scripts

FTOS_PYMT_DirectDebitNotification_File_
Validation

On demand script that is triggered when a file is uploaded during either of
the FTOS_PYMT_ARUDDInsert or DirectDebitADDACSInsert journeys. After
the user presses the Import Data button, the script validates that the file is in
 .txt format. The script also restricts the upload to only one file.

Input parameters: file - The DIDE payments file that needs to be uploaded.

Output parameters: fileValidation (boolean) - The result of the
validation (true/ false).

FTOS_PYMT_DIDEInstructionFile
This on demand script calls the runDIDEInstructionFileUK() function from the
FTOS_PYMT_DIDE server side script library, in order to generate the
payments instructions file for direct debit payments.

Input parameters: N/A

Output parameters: N/A

FTOS_PYMT_DIDE_ADDACS
This on demand script calls the processUKMandates function from FTOS_
PYMT_Mandate server side library in order to run different status changes
for the mandates, according to the received updates. The following actions
can be performed on the existing mandates: canceling, modifying or
reactivating.

Input parameters: N/A.

Output parameters: N/A.

TABLE OF CONTENTS 225

BILLING AND COLLECTION USER GUIDE

FTOS_DIDEUK_Instructions
This on demand script calls the runDIDEInstructionFileUK function
from the FTOS_PYMT_DIDE server side script library, in order to generate the
payment instructions file for the UK direct debit mandates.

Input parameters: mandates - A string containing the file type.

Output parameters: N/A.

Business Workflow Configuration Actions

FTOS_PYMT_DirectDebitMandate is the master business workflow that handles the
different types of changes affecting a direct debit mandate during its lifetime. For
more details about the mandate behavior, its states and the business workflow
diagram consult the Direct Debit page.

Transition Description
_Proposal Initial state.

Active_Cancelled

When the system registers a notification about
the mandate cancellation. The transition to this
status is made according to the 0, 1, 2, 3, B, C
Reason Codes. These values, received in the
ADDACS file, are specific for mandates deletion.

Active_Expired

When the mandate reaches its end day. The
expiration triggers the automatic change of the
payment type on the policy, from Direct Debit to
Bank Transfer (OP).

Active_VersionClosed When a version of the mandate is closed. Used
for mandate versioning.

Approved_Active When the mandate reaches its start day.

Approved_Draft
When a change of the policy payment type from
Bank Transfer (OP) into Direct Debit is
performed on a policy.

Approved_Expired When the number of days for the activation of a
mandate were exhausted.

Cancelled_Active

The transition to this status is made according to
the R reason code, received in the ADDACS file.
The R value is specific for mandates
reactivation.

TABLE OF CONTENTS 226

BILLING AND COLLECTION USER GUIDE

Transition Description

Draft_Active

When the mandate reaches its start day.
This transition is triggered by the DIDEUK_
Instructions job, which verifies if the current
date is the mandate begin date and changes the
status to Active for all eligible mandates.

Draft_Cancelled

When the system registers a notification about
the mandate cancellation. The transition to this
status is made according to the 0, 1, 2, 3, B, C
Reason Codes. These values, received in the
ADDACS file, are specific for mandates deletion.

Draft_Expired

When the number of days for the activation of a
mandate were exhausted. The expiration
triggers the automatic change of the payment
type on the policy, from Direct Debit to Bank
Transfer (OP).

Draft_Pending
After the instruction file for the mandate's
activation is generated, and the mandate is
pending approval from the bank.

Draft_VersionDraft When the mandate versioning process starts.
Pending_Active When the mandate reaches its start day.

Pending_Cancelled
When the system registers a notification (e.g.
AUDDIS file) about canceling the mandate, or a
user manually cancels the mandate.

Proposal_Active When the mandate reaches its start day.

Proposal_Draft
When the mandate is registered in the system
but it is not activated yet, or its begin date is yet
to come.

Proposal_Expired When the number of days for the activation of a
draft mandate were exhausted.

VersionDraft_Approved When a version of the mandate is approved.
Used for mandate versioning.

VersionDraft_VersionUnapproved When the opened version is not approved. Used
for mandate versioning.

Endpoints

FTOS_PYMT_GenerateMandate
The FTOS_PYMT_GenerateMandate endpoint calls the FTOS_PYMT_
GenerateMandate on demand script in order to generate a new UK direct
debit mandate. This endpoint is described in the Generate UK Direct Debit

TABLE OF CONTENTS 227

BILLING AND COLLECTION USER GUIDE

Mandate API page.

Processors

The FTOS_PYMT_DIDEProcessor is used for setting the following parameters:

DideConfiguration
This is an object containing the following settings:

 l numberOfDaysInAdvance - This parameter sets the date for invoice
generation with N days before the payment due date (for example, the
invoice can be generated with 3 or 5 or 10 days before the payment
due date).

 l runningOnBankHolidays - This parameter determines whether the
DIDE instruction file is generated on bank holidays or not (true or
false). Set to true if the DIDE instruction file is to be generated on a
bank holiday.

 l excludeWeekDays - This parameter defines the week days in which
the DIDE instruction file is not generated (for example, the invoice is
not generated on Saturday or Sunday).

 l type - This parameter sets the type of direct debit processing: either
SEPA (for European area) or UK.

If the type option configured in the processor is Sepa - the DIDE process will
take in consideration the functionality implemented for DIDE Sepa.
Otherwise, the DIDE process will take into consideration the flow
implemented for DIDE UK.

DIDEPaymentsFileDefaultValues
This is an object containing static values for the UK DD Payments Instruction
File. The values are:

 l destinationSort - Destination sort

 l destinationAcct - Destination acct

TABLE OF CONTENTS 228

BILLING AND COLLECTION USER GUIDE

 l destinationType - Destination type

 l usersName - Users name

DIDEPaymentsFileDefaultValuesUk
This is an object containing static values for the DD Mandate Instructions file.
The values are:

 l destinationSort - Destination sort

 l destinationAcct - Destination acct

 l destinationType - Destination type

 l transaction - Transaction

 l freeFormat - Free Format

 l amount - Amount

 l usersName - Users name

Below is an example of processor settings:

TABLE OF CONTENTS 229

BILLING AND COLLECTION USER GUIDE

TABLE OF CONTENTS 230

BILLING AND COLLECTION USER GUIDE

Server Side Script Libraries

FTOS_PYMT_Mandate
From the FTOS_PYMT_Mandate library, the following functions are used:

PYMT_Buffer
This function wraps a series of functions which perform actions on
the FTOS_PYMT_DIDE_ADDACSDetail entity or interpret data
received by it. Inside the PYMT_Buffer function, the following
functions are used:

updateUKBufferMandateId
This function updates the directDebitMandateId
processed attributes on a buffer that triggered an action
for a mandate (deletion, modification or reactivation).

Input parameters:

 l bufferId - The Id of the buffer on which the update
needs to be made.

 l mandateId - The Id of the mandate on which the
buffer performed an action.

Output parameters: N/A.

performActionsOnMandateUK
This function detects the type of action that the buffer
needs to perform on a mandate, based on the stageId that
the buffer has. If there is no stageId set on the buffer, the
function throws an exception, with an error message.

Input parameters:

TABLE OF CONTENTS 231

BILLING AND COLLECTION USER GUIDE

 l bufferObj - The object containing the data added in
the buffer.

 l isJob - (boolean) - Tells whether the function is
called by a job or not.

Output parameters: mandateId - The Id of the mandate
which was modified, cancelled, or reactivated.

PYMT_Mandate
Inside the PYMT_Mandate function, the following functions are
used:

updateMandateBusinessStatusId
This function updates the mandate business status.

Input parameters:

 l mandateId - The mandate unique identifier.

 l statusId - The business status unique identifier.

Output parameters: N/A.

getMandateDetailsByReason
This function returns the mandate details based on
reference or account holder name and account number.

Input parameters: bufferObj - The object containing the
following attributes reference, or accountHolder and
accountNumber.

Output parameters: Returns the fetch.

getReasonDetailsByCode

TABLE OF CONTENTS 232

BILLING AND COLLECTION USER GUIDE

This function returns the reason code details from FTOS_
PYMT_ADDACSReasonType entity based on the reason
code received as input.

Input parameters: reasonCode - The reason code (0, 1, 2,
3, B, C, D, E, R).

Output parameters: Returns the fetch.

processUKMandates
This function makes status changes (canceling, modifying or
reactivating) on the existing mandates.

Input parameters: N/A.

Output parameters: N/A.

deleteMandateFromBufferUK
This function executes the following:

 l It updates the business status of the mandate to
Cancelled.

 l It updates the stageId attribute to the one received
from the buffer.

 l It calls the updateUKBufferMandateId function to
update the directDebitMandateId and
processed attributes of the buffer.

 l If no mandate is found based on the reference, the
function throws an error.

Input parameters:

 l bufferObj - The object containing the data added in
the buffer.

TABLE OF CONTENTS 233

BILLING AND COLLECTION USER GUIDE

 l isJob - (boolean) - Tells whether the function is
called by a job or not.

Output parameters: mandateId - The Id of the cancelled
mandate.

addMandateFromBuffer
This function executes the following:

 l It inserts a new mandate record, with the data
received from the FTOS_PYMT_GenerateMandate
endpoint.

 l If there is already a mandate with the same reference
from the data object, the function throws an error.

 l It calls the updateUKBufferMandateId function to
update the directDebitMandateId and
processed attributes of the buffer.

Input parameters: bufferObj - The object containing the
data received from FTOS_PYMT_GenerateMandate
endpoint.

Output parameters: mandateId - The Id of the mandate
which was created.

modifyMandateFromBuffer
This function executes the following:

 l Creates a new version for a mandate with a specific
reference.

 l Updates the mandate with the new data received
from the buffer.

TABLE OF CONTENTS 234

BILLING AND COLLECTION USER GUIDE

 l If no mandate is found having the same reference as
the one received from the data object, the function
throws an error.

 l After the insert and update, the function updates the
business status of the old mandate version to
versionClosed.

 l Calls the updateUKBufferMandateId function to
update the directDebitMandateId and
processed attributes of the buffer.

Input parameters:

 l bufferObj - The object containing the data added in the

buffer.

 l isJob - (boolean) - Tells whether the function is
called by a job or not.

Output parameters: mandateId - The Id of the modified
mandate.

reactivateMandateFromBufferUK
This function executes the following:

 l Reactivates a cancelled mandate based on a specific
reference, received through the buffer object.

 l If no cancelled mandate or no mandate is found
having the same reference as the one received from
the data object, the function throws an error.

 l Calls the updateUKBufferMandateId function to
update the directDebitMandateId and
processed attributes of the buffer.

Input parameters:

TABLE OF CONTENTS 235

BILLING AND COLLECTION USER GUIDE

 l bufferObj - The object containing the data added in the

buffer.

 l isJob - (boolean) - Tells whether the function is
called by a job or not.

Output parameters: mandateId - The Id of the modified
mandate.

cancelMandateAndInvoices
This function sets the Id of all three business statuses that
the function needs. Next, by calling the
updateFileMandateId() function, we update the
directDebitMandateId attribute of the buffer records.
Next, the function checks if the found mandate is in one of
the two statuses - either Pending or Active, and changes its
business status to cancelled.

Input parameters:

 l bufferObj - The object containing the data added in
the buffer.

 l fileType - The type of the file that has been
imported.

Output parameters: N/A

getStatementIdByPolicyNo
For a policy reference received as parameter, this function
returns the statement in Generated or On Grace status and
verifies if the payment method is set to direct debit.

Input parameters: policyNo - The policy number (string).

Output parameters: The result of the query.

TABLE OF CONTENTS 236

BILLING AND COLLECTION USER GUIDE

getPendingMandates
This function returns all the mandates that are in Pending
business status.

Input parameters: N/A.

Output parameters: The query object.

changeBusinessStatusUK
This function changes the business status for UK mandates.

Input parameters: N/A.

Output parameters: N/A.

FTOS_PYMT_DIDE
From the FTOS_PYMT_DIDE library, the following functions are used:

General
Inside the General() function, the following functions are used:

isNullOrEmpty

TABLE OF CONTENTS 237

BILLING AND COLLECTION USER GUIDE

This function verifies if an input value is null or empty.

Input parameters: value - The value that needs validation.

Output parameters:true/ false - The result of the
validation.

 formatDateForFile
This functions transforms the format of an input date to
the ddmmyy format. Next, it adds a number of days to the
received date.

Input parameters:

date

noOfDays - How many days to add to the date received as
an input.

Output parameters: Date formated.

getProcessorValues
This function returns the static values stored in the FTOS_
PYMT_DIDEProcessor processor.

Input parameters: setting - The processor’s object key
name.

Output parameters: The object containing values from the
processor:

 l destinationSort

 l destinationAcct

 l destinationType

 l usersName

TABLE OF CONTENTS 238

BILLING AND COLLECTION USER GUIDE

 l transaction

 l freeFormat

 l amount

DIDE
This function wraps a series of functions which perform actions on
the FTOS_PYMT_DIDE and FTOS_PYMT_DIDEDetail entities,
generate and validate some data or generate .txt files, as follows:

runDIDEInstructionFile
This function executes the following:

 l Verifies that the DIDE instruction file can be
generated according the rules defined in the FTOS_
PYMT_DIDEProcessor processor
(runningOnBankHolidays,
numberOfDaysInAdvance, and
excludeWeekDays).

 l Generates the details needed for the file type
wanted.

 l Saves the statementId and
directDebitMandateId details into the FTOS_
PYMT_DIDEDetail entity.

 l Saves the directDebitMandateId details in FTOS_
PYMT_DIDEMandateInstructionDetail entity,
according to the file type.

 l Generates the .txt file.

TABLE OF CONTENTS 239

BILLING AND COLLECTION USER GUIDE

 l Saves the file into the FTOS_PYMT_DIDE entity or
into the FTOS_PYMT_DIDEMandateInstruction
entity.

 l It also saves the file on the server UploadEBS folder.

This function also uses all the functions mentioned below.

Input parameters: instructionFileType - Optional
parameter. This parameter has two possible values:

 1. statements - for files dealing with payments -
DIDEPaymentsInstructionFile (for SEPA) and,
respectively, DD_BACSPayments file (for UK).

 2. mandates - for files dealing with creation of new
DIDE mandates - NEW_DIDE_Mandates_
BACSInstructions file (for UK).

Output parameters: N/A.

getProcessorDetails
This function gets the configuration details of a processor.

Input parameters:

 l flowSettingsName - The name of the flow setting.

 l processorSettingsType - The type of the Digital
Processor Type.

 l processorSettingsName - The name of the
processor setting.

Output parameters: processorDetails - An object
containing the processor settings
runningOnBankHolidays, excludeWeekDays and
numberOfDaysInAdvance.

TABLE OF CONTENTS 240

BILLING AND COLLECTION USER GUIDE

getDayName
This function returns the name of a weekday (ex. Monday).

Input parameters: date - The date parameter.

Output parameters: dayName - The name of the week day.

getDIDERunningDay
This function verifies if the current day is a bank holiday or
a day defined in the FTOS_PYMT_DIDEProcessor. If one
condition is meet the function returns a true value.

Input parameters: settings - The object with the
processor settings - runningOnBankHolidays,
excludeWeekDays and numberOfDaysInAdvance.

Output parameters: True or false.

getDraftMandates
This function returns all the UK direct debit mandates in
Draft status.

Input parameters: mandateTypeUk - The mandateTypeId
has the UK value.

Output parameters: Returns the query result.

getPolicyDataAPI
This function imports the FTOS_PYMT_GetPolicyDataAPI
library in order to call the FTOS_GetPolicyData_API API.
The function sends an object containing a list of policies as
mandates references (where the reference is the policy
number) and receives the information about the specified
policies, in return. This function also parses the result.

TABLE OF CONTENTS 241

BILLING AND COLLECTION USER GUIDE

Input parameters: mandateObj - The list of policies.

Output parameters: Information result about the specified
policies.

getStatementsDetails
This function returns statements (invoices) to be included
in the DIDE instruction file, based on the following
conditions:

 l businessStatus of the statement = Generated

 l paymentType of the statement = directDebit

 l businessStatus of the direct debit mandate =
active

 l scheduledDate of the statement = null

 l dueDate of the statement <= current date +
numberOfDaysInAdvance

 l businessStatus of the policy = Enforced or
Suspended

 l mandateTypeId = SEPA or UK

Input parameters:

 l numberOfDaysInAdvance - The number of days in
advance for generating an invoice (for a policy
installment), before the due date for the payment.

 l mandateTypeId = SEPA or UK

Output parameters: resultStatements - Returns the
fetch.

processPaymentsInstructionSepa

TABLE OF CONTENTS 242

BILLING AND COLLECTION USER GUIDE

This function is specific for SEPA direct debit. This function
executes the following:

 l Inspects the results of the getStatementsDetails
function.

 l Inserts the statementId,
directDebitMandateId, and name details into the
FTOS_PYMT_DIDEDetail entity.

 l Populates the CSVContentArray with all the details
necessary for the generation of the DIDE instruction
file.

 l Updates the scheduledDate from the FTOS_PYMT_
Statement entity.

Input parameters:

 l result - The fetch result of the
getStatementsDetails
(numberOfDaysInAdvance, mandateTypeId)
function.

 l CSVContentArray - An empty array.

Output parameters: N/A.

processMandatesBACSInstructionUk
This function executes the following:

 l Inspects the results of mandates returned by the
query.

 l Inserts the directDebitMandateId details into the
FTOS_PYMT_DIDEMandateInstructionDetail entity.

 l Populates the CSVContentArray with all the details
necessary for generating the mandate instruction file.

TABLE OF CONTENTS 243

BILLING AND COLLECTION USER GUIDE

 l Sets the beginDate on the specified mandates.

 l Sets the status on the mandates to Active.

In the CSVContentArray file, the information is
concatenated as follows:

 l First column: destination sort + destination acct +
destination type + transaction + bank Sort Code +
account number.

 l Second column: free format + amount + users name.

 l Third column: reference + payer last name.

 l Fourth column: BACS Processing day.

Input parameters:

 l resultMandates - The mandates that respect all
conditions for being included in the file.

 l CSVContentArray - An empty array.

Output parameters: N/A.

processPaymentsInstructionUK
This function executes the following:

 l Inspects the results of the getStatementsDetails
function.

 l Inserts the statementId,
directDebitMandateId, and name details into the
FTOS_PYMT_DIDEDetail entity.

TABLE OF CONTENTS 244

BILLING AND COLLECTION USER GUIDE

 l Populates the CSVContentArray with all the details
necessary for the generation of the UK_DIDE
instruction file.

 l Updates the scheduledDate from the FTOS_PYMT_
Statement entity

In the CSVContentArray file, the information is
concatenated as follows:

 l First column: destination sort + destination acct +
destination type + transaction + bank Sort Code +
account number.

 l Second column: free format.

 l Third column: amount + users name.

 l Fourth column: reference + payer last name.

 l Fifth column: BACS Processing day.

Input parameters:

 l result - The fetch result of the
getStatementsDetails
(numberOfDaysInAdvance, mandateTypeId)
function.

 l CSVContentArray - An empty array.

Output parameters: N/A.

getInstallmentNo
This function returns the installment number for an invoice
reference, received as parameter.

Input parameters: statementReference - The invoice
reference.

TABLE OF CONTENTS 245

BILLING AND COLLECTION USER GUIDE

Output parameters: Returns the query result.

generatePaymentsInstructionFile
This function executes the following:

 l Generates the .txt DIDE instruction file based on
csvContentArray populated by the
processPaymentsInstruction(result,
csvContentArray) function.

 l Saves the file into FTOS_PYMT_DIDE entity.

 l Saves the file on the UploadEBS folder from the
portal.

Input parameters:

csvContentArray - The array with all the records for
direct debit instructions.

instructionFileType - Optional parameter, with two
possible values: 1. statements for
DIDEPaymentsInstructionFile (SEPA) and DD_
BACSPayments (UK) file and 2. mandates for NEW_DIDE_
Mandates_BACSInstructions file (UK).

Output parameters:

idInstructionFile - The Id of the new file inserted in
FTOS_PYMT_DIDE entity or FTOS_PYMT_
DIDEMandateInstruction entity.

entityName - FTOS_PYMT_DIDE - for
DIDEPaymentsInstructionFile (SEPA) and DD_
BACSPayments (UK) file OR FTOS_PYMT_
DIDEMandateInstruction for the NEW_DIDE_Mandates_
BACSInstructions file (UK).

TABLE OF CONTENTS 246

BILLING AND COLLECTION USER GUIDE

updateDIDEDetails
This function searches all the records from FTOS_PYMT_
DIDEDetail or FTOS_PYMT_DIDEMandateInstructionDetail
entities (depending on the file type) which have dideId (id
of the file) with nullvalues and updates them with the id
of the recently generated file.

Input parameters:

 l instructionFileObj -

 l instructionFileId - The id of the new generated
file and entityName - the name of the entity.

Output parameters: N/A

FTOS_PYMT_ARUDD
This server side script library contains methods that help in the process of
generating an ARUDD unconfirmed payments file for UK type. From the
FTOS_PYMT_ARUDD library, the ReasonForReturn function is used. Inside
theReasonForReturn function, the following generic methods are used:

formatText
This function trims, transforms into lowercase and removes the
spaces from a string.

Input parameters: text - string

Output parameters: text - formatted string

reasonForReturn
For the correlated mandates which contain these denied payments
with Reason for return code = 1- Instruction cancelled in the file,
the function triggers the Cancellation process - making just the

TABLE OF CONTENTS 247

BILLING AND COLLECTION USER GUIDE

transition of the Mandate from Active to Cancelled. The invoices
correlated with the mandates which contain denied payments - and
changed status to Cancelled, become Cancelled, also.

For the mandates which contain denied payments with Reason for
return code = 0 - Refer to payer in the file, the correlated invoices
that contain those denied payments become Unpaid, also.

Input parameters: records - The records inserted in FTOS_PYMT_
ARUDDDetail.

Output parameters: The query result.

Scheduled Jobs

FTOS_PYMT_DIDE_ADDACS
This job is scheduled to run every day at 5:15 AM, to perform status changes
(canceling, modifying or reactivating) on the existing mandates, based on the
unprocessed records from the buffer - the FTOS_PYMT_DIDE_ADDACS
entity.

Schedule Services: FTOS_PYMT_DIDE_ADDACS - on demand server
automation script.

FTOS_PYMT_DIDEInstructionFile
The job is scheduled to run every day at 3:00 AM to generate the .txt
instruction file. Depending on the configuration, it generates the
DIDEPaymentsInstructionFile (for SEPA) and DD_BACSPayments (for UK),
also.

Schedule Services: FTOS_PYMT_DIDEInstructionFile - on demand server
automation script.

DIDEUK_Instructions

TABLE OF CONTENTS 248

BILLING AND COLLECTION USER GUIDE

The job is scheduled to run every day at 4:00 AM to generate the .txt DIDE
UK mandates instruction file.

Schedule Services: FTOS_DIDEUK_Instructions - on demand server
automation script.

Outgoing Payments
The Billing and Collection functionalities let you add, approve, and pay different
payment requests, manually or automatically. Since the solution differentiates
between automatic outgoing payments and manual outgoing payments, you can also
configure it to deal with recurring payment requests received from different sources -
like Commissions, Broker Balances (Credit), and more.

FTOS_PYMT_OutgoingPayment - the entity storing the outgoing payments requests,
is the source of the Payments Instruction File which is generated by a scheduled job,
daily, in order trigger the payments from the insurer’s bank account. This makes the
Billing and Collection solution useful for recurring outgoing payments scenarios, since
it can automatically approve and allocate those types of outgoing payments. For other
scenarios, you have an outgoing payment request manual approval flow that lets you
approve or decline such requests, according to your needs.

See more details about handling Outgoing Payments in the following pages:

 l Outgoing Payments Admin - for details about how outgoing payments are
handled by the system.

 l Outgoing Payments Allocation - for details about how the outgoing payments
allocation and deallocation works.

 l Manual Outgoing Payment Requests - for details about how the manual
outgoing payments request are handled by the system.

 l Generate Outgoing Payments API - for details about how this API works.

TABLE OF CONTENTS 249

BILLING AND COLLECTION USER GUIDE

Outgoing Payments Admin
The Outgoing Payments Requests functionality lets you add, approve, and pay
different payment requests, manually or automatically.

Data model
 l Entity FTOS_PYMT_Payment with all attributes

 l Entity FTOS_PYMT_OutgoingPayment with all attributes.

FTOS_PYMT_Payment_EditFormOutgoing Journey

General description:

This is a user journey aimed at implementing the Edit Outgoing Payment
functionality, in order to manually allocate or deallocate an outgoing payment. This
journey is connected to the FTOS_PYMT_Payment entity.

This form is used to manually allocate or deallocate an outgoing payment.

The user clicks Allocate to open the Payment Request Search grid. The user searches
for the desired outgoing payments, inside the grid. For the search, the following
parameters are available:

Search parameters: Description
referenceNo Reference No.
outgoingPaymentTypeSearchId Outgoing Payment Type
amountMin Payment Amount min
amountMax Payment Amount max
payerNameSearch Payment Beneficiary Name
ibanSearch IBAN
startDueDateFrom Start Due Date From
startDueDateTo Start Due Date To

NOTE
At least one criteria has to be filled in. If not, a warning message is shown: "Warning!
The fields should not be empty!".

In order to show the results, the following functions are used:

TABLE OF CONTENTS 250

BILLING AND COLLECTION USER GUIDE

isNullOrEmpty(value)
This function verifies if an input value is null or empty.

Input parameters: value.

Output parameters: true/ false.

getPaymentRequestSearch
This function gathers all the payment requests found based on the search
criteria with the help of the FTOS_INSP_
ManualAllocatePaymentRequestSearch automation script. It returns
the results in a grid with the help of the generateCustomGrid(viewId,
viewDataSource, viewColumns) function. The payment requests
included in the results of the search comply with the following conditions:

 l are in Approved status;

 l have the same currency as the payment request;

 l have the same IBAN account.

Input parameters:

 l paymentCurrencyId – The payment currency.

 l paymentIban – The payment IBAN.

Output parameters: N/A.

allocateClickFunction
This function allocates a payment request on an outgoing payment, using the
automation script FTOS_PYMT_ManualOutgoingPaymentAllocation.

Input parameters: details – (Object) – The needed data from the
generateCustomGrid(viewId, viewDataSource, viewColumns)
function, to be used for manually allocating a payment.

Output parameters: N/A.

generateCustomGrid

TABLE OF CONTENTS 251

BILLING AND COLLECTION USER GUIDE

This function generates the results grid.

Input parameters:

viewId – The name of the CSS Id.

viewDataSource – The data result from the getPaymentRequestSearch
(paymentCurrencyId, paymentIban) function.

viewColumns – The type of columns that are displayed in the grid.

Output parameters: N/A.

FTOS_PYMT_OutgoingPaymentFileReadOnly Form Journey

This is a user journey connected to the FTOS_PYMT_OutgoingPaymentFile entity.

The Default View allows the user to see a list of all the outgoing payments instruction
files generated by the FTOS_PYMT_OutgoingPaymentInstructionFile scheduled job.
From this view, the user can select a record, double-click on it to launch the FTOS_
PYMT_OutgoingPaymentFileReadOnly Form, to see the file details. The form allows
the user to see the details (file name and date of generation) of the outgoing
payments instruction files generated by the FTOS_PYMT_
OutgoingPaymentInstructionFile scheduled job. Also, the form allows the user to
download the generated file.

On Demand Scripts

FTOS_PYMT_OutgoingPaymentInstructionFile - this script calls the
runOutgoingPaymentInstructionFile function from the FTOS_PYMT_
OutgoingPaymentFiles server side script library in order to generate the instructions
file for outgoing payments.

Input parameters: N/A.

Output parameters: N/A.

Endpoints

The following endpoints are used for matching between outgoing payment requests
and outgoing payments:

TABLE OF CONTENTS 252

BILLING AND COLLECTION USER GUIDE

FTOS_INSP_
ManualAllocatePaymentRequestSearch

This endpoint calls the FTOS_INSP_
ManualAllocatePaymentRequestSearch script to search the outgoing
payment requests to be allocated on an outgoing payment.

FTOS_PYMT_
ManualOutgoingPaymentAllocation

This endpoint uses the FTOS_PYMT_OutgoingPaymentAllocation_manual
library in the manual process of outgoing payment allocation.

Server Side Script Libraries

FTOS_PYMT_OutgoingPaymentAllocation_
manual

From the FTOS_PYMT_OutgoingPaymentAllocation_manual library, the
PYMT_OutgoingPayment function is used. Inside this function, the
following functions are used:

getPaymentAmount
This function gets the payment amount, the allocated amount and
the remaining payment amount for a payment.

Input parameters: paymentId - The unique identifier of the
payment.

Output parameters: Returns the results of the fetch.

getOutgoingPayments
This function gets the payment amount, paid amount and the
unpaid payment amount for an outgoing payment.

Input parameters: outgoingPaymentId - The unique identifier of
the outgoing payment.

Output parameters: Returns the results of the fetch.

TABLE OF CONTENTS 253

BILLING AND COLLECTION USER GUIDE

manualOutgoingPaymentAllocation
If the remaining payment amount is greater than 0, this function
calls the insertOutgoingPaymentAllocation function, from
the FTOS_PYMT_OutgoingPaymentAllocation library.

Input parameters:

 l paymentId - The unique identifier of the payment.

 l outgoingPaymentId - The unique identifier of the outgoing
payment.

Output parameters:

Returns an error message (Error in allocation process!) if there is an
error in the allocation process.

Returns an error message (Payment amount fully allocated!) if the
payment amount was fully allocated.

FTOS_PYMT_OutgoingPaymentFiles
From the FTOS_PYMT_OutgoingPaymentFiles library, the General function
is used. This function wraps up other functions which perform actions on the
FTOS_PYMT_OutgoingPaymentFile and FTOS_PYMT_
OutgoingPaymentFileDetail entities, generate and validate some data or
generate the necessary .txt file.

runOutgoingPaymentInstructionFile
This function executes the following:

 l verifies that the outgoing payments instructions file can be
generated according any defined rules - for example outgoing
payments are in Approved status and their Scheduled date
equals the current date.

 l generates the details needed for the outgoing payments
instruction file.

TABLE OF CONTENTS 254

BILLING AND COLLECTION USER GUIDE

 l saves the outgoingPaymentId and name in FTOS_PYMT_
OutgoingPaymentFileDetail entity.

 l generate the outgoing payments instruction file (in .txt
format).

 l saves the file in FTOS_PYMT_OutgoingPaymentFile entity.

 l saves the same file on the server OutgoingPayment folder.

The runOutgoingPaymentInstructionFile function uses all
the functions mentioned below.

Input parameters: N/A.

Output parameters: N/A.

getOutgoingPaymentDetails
This function returns the outgoing payments to be included in the
outgoing payments instruction file based on the following
conditions: the businessStatus of the outgoing payment is
Approved and the paymentScheduledDate is the Current Date.

Input parameters: N/A

Output parameters: resultOutgoingPayments - Returns the
fetch.

processOutgoingPaymentsInstruction
This function executes the following:

 l processes the results of the getOutgoingPaymentDetails
function.

 l insert details (outgoingPaymentId and name) into the
FTOS_PYMT_OutgoingPaymentFileDetail entity.

 l populates CSVContentArray with all the details that are
necessary for the outgoing payments instruction file.

TABLE OF CONTENTS 255

BILLING AND COLLECTION USER GUIDE

 l changes the business status from the FTOS_PYMT_
OutgoingPayment entity.

Input parameters:

 l result - The fetch result of the
getOutgoingPaymentDetails function.

 l CSVContentArray - An empty array.

Output parameters: N/A.

generateOutgoingPaymentsInstructionFile
This function executes the following:

 l generates the outgoing payments instruction file (in .txt
format) based on the CSVContentArray populated by the
processOutgoingPaymentsInstruction function,

 l saves the file into FTOS_PYMT_OutgoingPaymentFile entity,

 l saves the file on the OutgoingPayment folder from the portal.

Input parameters: CSVContentArray - An array with all the
records for outgoing payments instructions.

Output parameters: idInstructionFile - The Id of the file
inserted in FTOS_PYMT_OutgoingPaymentFile entity.

updateOutgoingPaymentFileDetails
This function finds all the records from FTOS_PYMT_
OutgoingPaymentFileDetail entity that have the
outgoingPaymentFileId (the Id of the outgoing payments
instruction file) with null values and updates that attribute with the
Id of the newly generated outgoing payments instruction file.

Input parameters: instructionFileId - The Id of the newly
generated outgoing payments instruction file.

TABLE OF CONTENTS 256

BILLING AND COLLECTION USER GUIDE

Output parameters: N/A

Scheduled jobs

FTOS_PYMT_OutgoingPaymentInstructionFile
This job is scheduled to run every day at 5:00 AM to generate the outgoing
payments instruction .txt file.

Schedule Services:

FTOS_PYMT_OutgoingPaymentInstructionFile - on demand Server
Automation Script, see above.

Outgoing Payments Allocation
For Outgoing Payments Deallocation scroll down or click the link.

Server Automation Scripts

The FTOS_PYMT_OutgoingPaymentAllocation server automation script uses the
following functions:

automaticOutgoingPaymentAllocation
Example of calling the function:automaticOutgoingPaymentAllocation
(paymentId).

Based on the payment and outgoing payment, this function gets and
prepares all the necessary data for inserting and updating the outgoing
payment and the payment.

Input parameters: paymentId - The Id of the payment.

TABLE OF CONTENTS 257

BILLING AND COLLECTION USER GUIDE

Output parameters:

getPayment
Example of calling the function: getPayment(paymentId).

This function gets and returns the payment details based on the Id of the
payment.

Input parameters: paymentId - The Id of the payment.

Output parameters: payment[0] - The query result containing details of the
payment requested through the input parameter.

findOutgoingPayments
Example of calling the function: findOutgoingPayments(payment,
processor)

This function is meant to return all outgoing payments.

Input parameters: payment and processor.

Output parameters: outgoingPaymentList - The list of outgoing payments
that comply with the references contained in the processor.

getOutgoingPaymentReferenceValues
Example of calling the function: getOutgoingPaymentReferenceValues
(payment, processor)

This function returns an object containing all the references to be applied.

Input parameters: payment and processor.

Output parameters: result.

getOutgoingPaymentsByConditions
Example of calling the function: getOutgoingPaymentsByConditions
('paymentReferenceRule', referenceValues, processor).

TABLE OF CONTENTS 258

BILLING AND COLLECTION USER GUIDE

Based on the payment type, reference rules and processor, this function
returns a list of outgoing payments that are compliant with the references
contained into the processor input parameter.

Input parameters:

 l type - string, rule name

 l whereValuesObj - reference rules

 l processor

Output parameters: outgoingPaymentList - The list of outgoing payments
that comply with the references contained in the processor.

insertOutgoingPaymentAllocation
Example of calling the function: getOutgoingPaymentsByConditions
('paymentReferenceRule', referenceValues, processor)

This function makes all the necessary updates for FTOS_PYMT_
OutgoingPayment and FTOS_PYMT_Payment entities. It also inserts a record
into FTOS_PYMT_OutgoingPaymentRequestXPayment entity - the
relationship table between FTOS_PYMT_OutgoingPayment and FTOS_
PYMT_Payment entities, and returns the Id of the inserted record.

Input parameters:

 l payment

 l outgoingPayment

Output parameters: outgoingPaymentRequestXPaymentId

Outgoing Payment Deallocation

For deallocation, the following functions are used:

deallocateOutgoingPayment

TABLE OF CONTENTS 259

BILLING AND COLLECTION USER GUIDE

Example of calling the function: deallocateOutgoingPayment
(outgoingPaymentId, paymentId).

This function updates the FTOS_PYMT_OutgoingPayment entity and changes
the business status into Deleted for the FTOS_PYMT_
OutgoingPaymentRequestXPayment item.

Input parameters:

 l outgoingPaymentId - The Id of the outgoing payment.

 l paymentId - The Id of the payment.

Output parameters: N/A.

deallocatePayment
Example of calling the function: deallocatePayment(paymentId,
paymentUpdateObj).

Use to update the FTOS_PYMT_Payment entity

Input parameters:

 l paymentId - The Id of the payment.

 l paymentUpdateObj - An object containing the update.

Output parameters: N/A.

getOutgoingPaymentsRequestXPayment
Example of calling the function: getOutgoingPaymentsRequestXPayment
(outgoingPaymentId, paymentId).

This function gets and returns the outgoingPaymentRequestXPayment
details in allocated status, based on the outgoingPaymentId and
paymentId.

Input parameters:

TABLE OF CONTENTS 260

BILLING AND COLLECTION USER GUIDE

 l outgoingPaymentId - The Id of the outgoing payment.

 l paymentId - The Id of the payment.

Output parameters: fetchResult[0] - query result containing details of
the outgoing payment requested through the input parameter.

getOutgoingPayment
Example of calling the function: getOutgoingPayment
(outgoingPaymentId).

This function gets and returns the outgoing payment details based on the Id
of the outgoing payment.

Input parameters: outgoingPaymentId - The Id of the outgoing payment.

Output parameters: outgoingPayment[0] - The query result containing
details of the the outgoing payment, requested through the input parameter.

getPayment
Example of calling the function: getPayment(paymentId).

Function meant to get and return the payment details based on the payment
ID

Input parameters: paymentId - The Id of the payment.

Output parameters: payment[0] - The query result containing details of the
payment, requested through the input parameter.

Manual Outgoing Payment Requests
This functionality lets you manually add, approve or pay the Outgoing Payments
Requests received from different sources or systems. Once added, the system
automatically populates the referenceNo attribute for the new outgoing payment
request, by using a sequencer.

TABLE OF CONTENTS 261

BILLING AND COLLECTION USER GUIDE

Data model
Entity FTOS_PYMT_OutgoingPayment with all attributes.

Form Client Side Scripts

In order to show the results, the following functions are used:

paymentReqReadOnly
This function sets some form fields to ReadOnly, based on the entity
business status.

Input parameters: N/A.

Output parameters: N/A.

hideStepsOnStatus
This function hides some form steps depending on the business status or if
the form is in Edit mode.

Input parameters: N/A.

Output parameters: N/A.

getBank
This function performs the following actions:

 l Gets the bank details based on the bank code, from the iban
parameter.

 l Checks the result and throws a warning message if the validity
condition (bank code) is not met.

 l If there is no result the function displays a warning message.

 l Upon a valid result, the function sets the bankId, to be used later on
for completing the form field.

Input parameters:

TABLE OF CONTENTS 262

BILLING AND COLLECTION USER GUIDE

 l iban - The string of characters introduced in the IBAN form field.

 l ibanType - The type of the IBAN, used for differentiating between the
beneficiary details and the payer ones.

Output parameters: N/A.

completeBankOnIban(iban)
Depending on the ibanType, this function calls the previous function
getBank with a different iban parameter for getting the correct bank
details.

Input parameters: iban - The type of the IBAN - let's you know which form
field you get the value from.

Output parameters: N/A.

detectBankOnIban
This function calls the previous function completeBankOnIban at step
loading and also on a form field change, for the IBAN.

Input parameters: N/A.

Output parameters: N/A.

callCompletePayerDetailsEndpoint
This function executes the following actions:

 l Calls the FTOS_PYMT_OutgoingPayment_CompletePayerDetails
endpoint;

 l Sends an object to this endpoint, containing the currencyId;

 l If the response from the endpoint is different than null, the function
sets some form fields with the corresponding data.

Input parameters: N/A.

Output parameters: N/A.

TABLE OF CONTENTS 263

BILLING AND COLLECTION USER GUIDE

getPayerDetails
This function only calls the previous function
callCompletePayerDetailsEndpoint on a form field change(currencyId).

Input parameters: N/A.

Output parameters: N/A.

requestsButtons
This function hides or shows the proposal and cancellation buttons
depending on the entity business status.

1. The Proposal button functionality includes the following actions:

 l Saves the data introduced in the form fields.

 l Calls the ProposePaymentReturnValidation endpoint.

 l Redirects the user back to the current request, if the case.

 l Reloads the page, if the form is in edit mode.

2. The Cancellation button calls theFTOS_INSP_Payment_
cancelPaymentReturn endpoint and refreshes the page, after the
response was received.

Input parameters: N/A.

Output parameters: N/A.

getBeneficiaryFullName
This function gets the full name of the outgoing payment's beneficiary by
calling the FTOS_INSP_GetAccountData_UniqueIdNo endpoint.

Input parameters: N/A.

Output parameters: N/A.

Endpoints

FTOS_INSP_GetAccountData_UniqueIdNo

TABLE OF CONTENTS 264

BILLING AND COLLECTION USER GUIDE

The endpoint fetches the account details from the Account entity based on
the unique identifier - PIN for an individual person and FiscalRegistrationNo
for a legal person.
After the fetch, the endpoint uses the setData method to send the obtained
data to the client side for populating the required fields. The endpoint calls
the getAccountDataByUniqueIdNo function from the FTOS_
GetAccountData server side script library.

ProposePaymentReturnValidation
This endpoint performs two different actions on an outgoing payment:

 l Change the business status into Proposed.

 l Update the proposalDate attribute of the outgoing payment with the
current date.

FTOS_INSP_Payment_cancelPaymentReturn
This endpoint is used for changing the outgoing payment business status.

FTOS_PYMT_OutgoingPayment_
CompletePayerDetails

This endpoint is called when the Payment No field changes to get data from
the FTOS_PYMT_Payment entity based on it’s value. The endpoint uses the
obtained values to populate the Payer Details section fields.

Server Side Script Libraries

 FTOS_GetAccountData

This library contains functions for fetching data from or inserting data into the
Account entity, based on different conditions. From this library, the following function
is used:

getAccountDataByUniqueIdNo

TABLE OF CONTENTS 265

BILLING AND COLLECTION USER GUIDE

This function runs a fetch on the Account entity to retrieve some attributes,
based on the unique identifier value.

Input parameters: uniqueIdentifier - The unique identifier for each
account, based on the account type - PIN for an individual person and
FiscalRegistrationNo for a legal person.

Output parameters: acc[0] - The first account found by the fetch containing
the required details.

 FTOS_OutgoingPaymentRequest

This library contains functions for inserting, updating and manipulating data used in
the outgoing payment request process. From this library, the following functions are
used:

updateOutgoingPaymentRequest
This function updates some attributes from the FTOS_PYMT_
OutgoingPayment entity for an outgoing payment with a specific Id.

Input parameters:

 l requestId - The Id of the outgoing payment request.

 l paymentNo - The value of the payment number field filled in at a new
insert.

Output parameters: N/A.

updateApprovedByUser
The function updates the approvedBy and the approvedBy_displayname
attributes for an outgoing payment based on a specific Id.

Input parameters:

 l requestId - The Id of the outgoing payment request.

 l userId - The Id of an existing user.

 l userName - The full name of an existing user.

TABLE OF CONTENTS 266

BILLING AND COLLECTION USER GUIDE

Output parameters: N/A.

updatePaidUnpaidAmount
The function updates the paidAmount and the unpaidAmount attributes
for an outgoing payment based on the specified Id.

Input parameters:

 l requestId - The Id of the outgoing payment request.

 l paymAmount - The value of the payment amount field, received from
the client-side.

Output parameters: N/A.

paymScheduledDateValidation
The payment scheduled date inserted in a request form for an outgoing
payment has to be greater than or equal to the current date. If the scheduled
date is less than the current date, the system throws an error.

Input parameters: sheduledDate - The date object containing the details
about the outgoing payment schedule.

Output parameters: N/A.

fetchAccountOnId
The function fetches, based on the Id, some details from the Account entity
for an account.

Input parameters: accId - The Id of the account.

Output parameters: accounts - The list containing the account that has
been found by the fetch.

insertAccountNew

TABLE OF CONTENTS 267

BILLING AND COLLECTION USER GUIDE

If there is no account with a specific uniqueIdNo, the function gets the Id of
the selected account type and inserts that Id on the Account entity, along
with a set of attributes.

Input parameters:

 l paymBenId - The Id of an account.

 l name - The full name of the beneficiary.

 l firstName - The first name of the beneficiary.

 l lastName -The last name of the beneficiary.

 l beneficiaryType -The Id of the selected optionset item .

 l uniqueIdNo - The unique identifier for an account.

Output parameters: N/A.

updateAccountIfChangedValues
This function checks if an existing account is going to be updated by
comparing the stored data with the data received from the form. If the new
data is different, the function goes ahead and updates the attributes for the
selected account.

Input parameters:

 l paymBenId -The Id of an account.

 l name -The full name of the beneficiary.

 l firstName -The first name of the beneficiary.

 l lastName -The last name of the beneficiary.

Output parameters: N/A.

fetchOutPaymentOnId

TABLE OF CONTENTS 268

BILLING AND COLLECTION USER GUIDE

The function contains a fetch performed on the FTOS_PYMT_
OutgoingPayment entity based on a specific Id.

Input parameters: opId -The Id of an outgoing payment.

Output parameters: outgoingPayment - The list containing the outgoing
payments found by the fetch.

fetchPaymentOnId
The function contains a fetch performed on the FTOS_PYMT_Payment entity
based on a specific Id.

Input parameters: pId -The Id of a payment.

Output parameters: payment -The list containing the payments found by the
fetch

cancelOutgoingPaymentRequest
The function changes the business status of an outgoing payment with the
one received as a parameter and if it finds a payment with a specific
sourcePaymentId, it updates a couple of its attributes.

Input parameters:

 l paymId -The Id of an outgoing payment.

 l paymAmount - The numeric value of the payment amount.

 l newBS - The new business status of the outgoing payment.

Output parameters: N/A.

updateOutgoingPaymentBeneficiaryName
This function checks if an existing account name is going to be updated by
comparing the stored data with the data received from the form. If the new
data is different, the function goes ahead and updates the
beneficiaryName attribute for the selected account.

Input parameters:

TABLE OF CONTENTS 269

BILLING AND COLLECTION USER GUIDE

 l opReqId - The Id of an outgoing payment request.

 l name - The full name of the beneficiary.

 l firstName - Thefirst name of the beneficiary.

 l lastName - The last name of the beneficiary.

 l beneficiaryCategoryId - The Id of the account category type.

Output parameters: N/A.

getPayerDetails
The function maps all the data inside a JSON processor.

Input parameters:

 l currency - An object containing the currency details.

 l processor - An object containing the data from the processor.

Output parameters: result - An object containing all the mapped data from
the processor.

getCurrencyDetails
The function contains the fetch performed on the FTOS_CMB_Currency
entity based on a specific Id.

Input parameters: currencyId - The Id of a currency.

Output parameters: currency[0] - The currency found by the fetch.

getPayerDetailsFromProcessor
This function gets the data from the FTOS_PYMT_OutgoingPayments_
PayerDetails processor and identifies the data related to the currency
code of the selected currency.

TABLE OF CONTENTS 270

BILLING AND COLLECTION USER GUIDE

This function gets the payer data from the FTOS_PYMT_
OutgoingPayments_PayerDetails processor based on the selected
currency code.

Input parameters: currencyId - The Id of a currency.

Output parameters:payerDetails - An object containing the payer name
and the IBAN.

On Demand Scripts

FTOS_PYMT_UpdateDeclineReason
This script updates the paymentApprovalComments attibute with the text
written in the reason pop-up.

Billing And Collection Endpoints
There are cases when you need to access the product data or Insurance Product
Factory functionalities in a way alternative to the one available as a user journey, in
Innovation Studio. The solution allows you to make API calls regarding different
product-related aspects. For interacting with defined products, the following
endpoints are available:

 l FTOS_PYMT_StatementsGenerationAPI - Use this API to generate invoices for
specific policies and installments. All the statement (invoice) generation
business conditions will be applied when using the API as well. After calling the
API, the invoice reference will be included in the response.

 l FTOS_PYMT_AddOutgoingPaymentRequest - Use this API to insert a new
outgoing payment request, for different types of payments. After validating all
the input keys, a new request is inserted, and the reference of the payment
returned in the response.

TABLE OF CONTENTS 271

BILLING AND COLLECTION USER GUIDE

 l FTOS_PYMT_GenerateMandate - Use this API to generate a new direct debit
mandate for UK. The API handles the validation of the input keys as well as the
logic for inserting the mandate, first into the FTOS_PYMT_
DirectDebitMandateBuffer entity, and then, after processing the details, into
the FTOS_PYMT_DirectDebitMandate entity.

Apart from the above mentioned endpoints, the following is the list of all the other
endpoints available with the Billing and Collection solution:

Name Script Description
ButtonActionPaymentRetur
n

ButtonActionPaymentRetur
n

FTOS_
AllocationInstallmentSearch

FTOS_
AllocationInstallmentSearch

FTOS_
CreateTestPayUPayment

FTOS_
CreateTestPayUPayment

FTOS_INSP_
GetAccountData_
UniqueIdNo

FTOS_INSP_
GetAccountData_
UniqueIdNo

FTOS_INSP_
ManualAllocatePaymentReq
uestSearch

FTOS_INSP_
ManualAllocatePaymentReq
uestSearch

This endpoint calls the
FTOS_INSP_
ManualAllocatePaymentReq
uestSearch script to search
the outgoing payment
requests to be allocated on
an outgoing payment.

FTOS_INSP_
ManualAllocationSearch

FTOS_INSP_
ManualAllocationSearch

FTOS_INSP_Payment_
cancelPaymentReturn

FTOS_INSP_Payment_
cancelPaymentReturn

FTOS_INSP_Payment_
declinePaymentReturn

FTOS_INSP_Payment_
declinePaymentReturn

FTOS_PayU_ImportBdx FTOS_PayU_ImportBdx
FTOS_PYMT_
DeallocateOutgoingPayment

FTOS_PYMT_
DeallocateOutgoingPayment

FTOS_PYMT_
DeallocateStatement

FTOS_PYMT_
DeallocateStatement

FTOS_PYMT_
DeallocateStatementDetail

FTOS_PYMT_
DeallocateStatementDetail

FTOS_PYMT_
DirectDebitMandate_
cancelMandate

FTOS_PYMT_
DirectDebitMandate_
cancelMandate

TABLE OF CONTENTS 272

BILLING AND COLLECTION USER GUIDE

Name Script Description
FTOS_PYMT_
DirectDebitNotification_
File_Validation

FTOS_PYMT_
DirectDebitNotification_
File_Validation

FTOS_PYMT_
GenerateStatementOnInstal
lment

FTOS_PYMT_
GenerateStatementOnInstal
lment

FTOS_PYMT_
InsertStatementDueDate

FTOS_PYMT_
InsertStatementDueDate

FTOS_PYMT_
ManualOutgoingPaymentAll
ocation

FTOS_PYMT_
ManualOutgoingPaymentAll
ocation

FTOS_PYMT_
ManualPaymentAllocation

FTOS_PYMT_
ManualPaymentAllocation

FTOS_PYMT_
OutgoingPayment_
ApprovalAttributes

FTOS_PYMT_
OutgoingPayment_
ChangeBusinessStatusToAp
proved

FTOS_PYMT_
OutgoingPayment_
ChangeBusinessStatusToAp
proved

FTOS_PYMT_
OutgoingPayment_
CompletePayerDetails

FTOS_PYMT_
OutgoingPayment_
CompletePayerDetails

FTOS_PYMT_
OutgoingPaymentAutomatic
Allocation

FTOS_PYMT_
OutgoingPaymentAutomatic
Allocation

This endpoint uses the
FTOS_PYMT_
OutgoingPaymentAllocatio
n_manual library in the
manual process of outgoing
payment allocation.

FTOS_PYMT_
PaymentAutomaticAllocatio
n

FTOS_PYMT_
PaymentAutomaticAllocatio
n

FTOS_PYMT_Statement_
EditStatus

FTOS_PYMT_Statement_
EditStatus

FTOS_PYMT_Statement_
OnGrace_and_Unpaid_
status

FTOS_PYMT_Statement_
OnGrace_and_Unpaid_
status

FTOS_PYMT_
StatementDetail_
RemoveInstallment

FTOS_PYMT_
StatementDetail_
RemoveInstallment

FTOS_PYMT_
ValidateExternalRevenue

FTOS_PYMT_
ValidateExternalRevenue

TABLE OF CONTENTS 273

BILLING AND COLLECTION USER GUIDE

Name Script Description
FTOS_PYMT_
validatePaymentReturn

FTOS_PYMT_
validatePaymentReturn

ProposePaymentReturnVali
dation

ProposePaymentReturnVali
dation

Generate Statements API
This functionality adds new billing statements (invoices) in the system, based on API
requests received from other FintechOS solutions - such as Policy Admin or from
other systems. On the FTOS_PYMT_Statement entity, for the newly generated
invoice, the API response populates the following attributes:

 l Statement Id.

 l Statement Reference.

 l Statement Premium Amount.

 l Total Taxes.

 l Statement Amount.

 l Statement Due Date.

 l Payment Type Id.

Generate Statements API Example
The system registers a new invoice, containing installments from three
different policies.

1 let policiesData = {
2 policies: [{
3 "policyNo": "80000863",
4 "installmentNo": 7
5 },
6 {
7 "policyNo": "80000862",
8 "installmentNo": 11
9 },

TABLE OF CONTENTS 274

BILLING AND COLLECTION USER GUIDE

10 {
11 "policyNo": "80000861",
12 "installmentNo": 2
13 }
14],
15 statementDueDate: "2021-10-30"
16 }
17
18 ebs.callActionByNameAsync('FTOS_PYMT_

StatementsGenerationAPI', policiesData).then(function(e)
{

19 console.log(e)
20 });

Request Data Parameters
The following is the list of data parameters included in the request:

Parameter Description

policies An array with the policy request details: policyNo and
installmentNo.

statementDueDate The invoice invariant date, when the payment is due
(string).

Response
The following is an example of a response:

1 {
2 UIResult: {
3 …},
4 Message: null,
5 IsSuccess: true,
6 ClientScript: null,
7 Serialized: '{"UIResult":

{"NavigateToEntityPage":false,"Navigat…ientScript":null,"
Serialized":null,"ErrorCode":0}',

8 …
9 }

10 ClientScript: null
11 ErrorCode: 0
12 IsSuccess: true
13 Message: null

TABLE OF CONTENTS 275

BILLING AND COLLECTION USER GUIDE

14 Serialized: {
15 UIResult: {
16 NavigateToEntityPage: false,
17 NavigateToEntityPageOnEdit: false,
18 NavigateToEntityFormName: null,
19 NavigateToEntityName: null,
20 NavigateToEntityId: null,
21 NavigateToEntityInsertDefaults: null,
22 NavigateToUrl: null,
23 DownloadFile: null,
24 ReloadPage: false,
25 Message: null,
26 IsSuccess: false,
27 Data: {
28 "isSuccess": true,
29 "result": [{
30 "statementId": "280f5f20-676c-4f74-

b1c4-121d9bd42ec4",
31 "statementNo": "REF0003383",
32 "statementPremiumAmount": 10.73,
33 "totalTaxes": 1.07,
34 "statementAmount": 10.73,
35 "paymentTypeId": "180921d6-345a-4d83-

a37b-278569008e7c",
36 "dueDate": {
37 "invariantDate": "2021-11-11"
38 }
39 },
40 {
41 "statementId": "0894a6f8-69b0-467c-

9991-6b6f22f19d33",
42 "statementNo": "REF0003384",
43 "statementPremiumAmount": 10.73,
44 "totalTaxes": 1.07,
45 "statementAmount": 10.73,
46 "paymentTypeId": "180921d6-345a-4d83-

a37b-278569008e7c",
47 "dueDate": {
48 "invariantDate": "2021-11-11"
49 }
50 }
51],
52 "errorMessage": null,
53 "errorCode": null
54 },

TABLE OF CONTENTS 276

BILLING AND COLLECTION USER GUIDE

55 NavigateToPageNo: null
56 },
57 Message: null,
58 IsSuccess: true,
59 ClientScript: null,
60 Serialized: null,
61 ErrorCode: 0
62 }
63 UIResult:
64 Data: {
65 isSuccess: null,
66 errorMessage: null,
67 errorCode: null,
68 result: {
69 …}
70 }
71 DownloadFile: null
72 IsSuccess: false
73 Message: null
74 NavigateToEntityFormName: null
75 NavigateToEntityId: null
76 NavigateToEntityInsertDefaults: null
77 NavigateToEntityName: null
78 NavigateToEntityPage: false
79 NavigateToEntityPageOnEdit: false
80 NavigateToPageNo: null
81 NavigateToUrl: null
82 ReloadPage: false[[Prototype]]: Object[[Prototype]]:

Object

Response description:

Key Description
errorCode Error code.
isSuccess Marks weather the request is successful or not.
errorMessage Error message.

TABLE OF CONTENTS 277

BILLING AND COLLECTION USER GUIDE

Key Description

result

Either null or an array of objects, containing the following:

 l Statement Id

 l Statement Reference

 l Statement Premium Amount

 l Total Taxes

 l Statement Amount

 l Statement Due Date

 l Payment Type Id

Error Messages
The following are the error messages that can be encountered during the API
invoice generation process:

Code Text Description

ERR.BL.50101 Invalid request! No data provided or the policyData
doesn’t have the policies property.

ERR.BL.50102

Invalid request!
PolicyNo or
InstallmentNo
can not be empty!

This error appears when the provided
data fields are empty.

ERR.BL.50103
Invalid request!
Policy {0} inserted
multiple times!

This error appears when the same
PolicyNo is included multiple times
inside the policies array.

ERR.BL.50104

Invalid request!
One or more
policies do not
have valid
installments!

A valid policy installment is one that has
the installment amount greater than 0,
the installment due date not null and
the installment business status OnTime.

TABLE OF CONTENTS 278

BILLING AND COLLECTION USER GUIDE

Code Text Description

ERR.BL.50105

The policies from
the request can
not be included in
the same
statement!

There is a mismatch between one (or
some) of the requested policies and the
policy grouping rule. For generating a
multiple policies invoice, policies need
to have the same contractor, payment
type, currency, WO product
configurations, and due date.

ERR.BL.50106
Invalid request!
Policy {0} is in {1}
status!

This error appears when the invoice
generation API request is made for a
policy that does not have a valid status.

ERR.BL.50107

The due date of
the statement can
not be from the
past!

This error appears when the provided
data field is filled with a past statement
due date.

ERR.BL.50108
Invalid request!
Policy {0} does
not exist!

The requested policy is not registered in
the system.

ERR.BL.50109

The statement
can not be
generated for
policies that have
broker collection
as payment type!

The invoice cannot be generated for
policies that have broker collection as
payment type.

Endpoint
The FTOS_PYMT_StatementsGenerationAPI endpoint is used to run the
FTOS_PYMT_StatementsGenerationAPI server automation script.

Server Automation Script
FTOS_PYMT_StatementsGenerationAPI - Script called with a data object.

This script executes the following:

 l Validates the request data object.

 l Searches, verifies and returns the policies that are eligible for invoice
generation.

TABLE OF CONTENTS 279

BILLING AND COLLECTION USER GUIDE

 l If all the necessary conditions are met, it uses the details gathered to
generate the new invoice.

The script contains the following functions:

statementsGenerationAPI
This function validates the data object. For example if an invoice due
date is provided, it must be greater than the current day. (If the
invoice due date is not included in the request, the system assigns
to it the installment due date's value.) After checking the payment
type for each policy, this function calls the
getStatementGenerationRules function from the FTOS_PYMT_
Statements server automation script library in order to identify
whether there is any single rule payment type amongst a multiple
policies grouping. If a mismatch is found, the system throws an
error (see error ERR.BL.50105, above).

Input parameters: policiesData - The request object.

Output parameters: rez - The result object.

searchPolicies
This function verifies whether the policy is registered in the system,
has the installment amount greater than 0, has the installment due
date not null, has the installment business status OnTime. Next, the
function returns an array of objects with all policies found, that are
suitable for invoice generation.

This function also verifies if the request is not duplicated. If it finds
that the details of the same policy are duplicated inside the same
request, it throws and error.

Input parameters: policiesData - The request object.

Output parameters: getPolicies / rez - Depending on the query
result or validation.

searchPolicyStatus

TABLE OF CONTENTS 280

BILLING AND COLLECTION USER GUIDE

This function verifies whether the policy has a valid status -
 Proposal, Issued, Enforced or Suspended and returns a result
containing the policy Id, policy No, and policy status.

Input parameters: policyNo (string) - The policy number.

Output parameters: policy - The query result.

validatePolicies
For the case of generating an invoice for more than one policy, this
function verifies whether the request complies to the multiple
policies inclusion rule - that is the policies need to have the same
contractor, same payment type, same currency, same WO product
configurations, and the same due date.

Input parameters: policies - An array of objects containing the
policies details.

Output parameters: rez - An object containing the result.

getSinglePaymentTypeRule
Based on the single rule name, this function returns all payment
types assigned to it.

Input parameters: N/A.

Output parameters: singlePmtTypeArr - An array with single rule
payment types Ids.

generateStatements
This function calls the FTOS_PYMT_StatementsAPI script library
and, by using all the gathered data, it generates the billing
statement (the invoice) for the selected policy (or policies).

Input parameters:

TABLE OF CONTENTS 281

BILLING AND COLLECTION USER GUIDE

 l policies - An array of objects containing details from the
policies for which invoices are to be generated.

 l statementDate (string) - The date of the invoice generation.

Output parameters: rez - An object containing the result of the
operation - expected invoice.

Server Automation Script Library
The FTOS_PYMT_StatementsAPI library validates and creates new invoices
(statements) based on the received data from the FTOS_PYMT_
StatementsGenerationAPI script (see above).This function also calls the
generateGroupedProducts(sgDay) and
getStatementGenerationRules functions from FTOS_PYMT_Statements
server automation script library in order to validate and generate the
invoices.

From this library, the StatementGeneration script is used. This script
validates and creates new invoices based on the request object received
from the FTOS_PYMT_StatementsGenerationAPI script. This script contains
the following functions:

insertStatements
This function prepares the rules for generating invoices, as follows:

 l multiplePolicies - multiple policies are included in the same
invoice, based on the same contractor, currency, payment
type, product and due date.

 l singlePolicies - only one policy is included in the invoice.

Input parameters:

 l invariantDate - maxDate.

 l accountId - null.

TABLE OF CONTENTS 282

BILLING AND COLLECTION USER GUIDE

 l sgDay (integer) - The number of days in advance before the
payment's due date.

 l policiesArrAPI - The array of policies for which invoices
are going to be generated.

 l statementDueDateAPI - The date in string format or null.

Output parameters: returnArr - An array of objects with the
newly generated invoices, containing:

 l Statement Id,

 l Statement Reference,

 l Statement Premium Amount,

 l Total Taxes,

 l Statement Amount,

 l Statement Due Date,

 l Payment Type Id.

getStatementByPaymentType
This functions gathers and filters all the installments according to
the rules, payment type and grouped products. Next, it creates the
new invoice (statement) and invoice details (statement details).

Input parameters:

 l insertStatementObj - An object containing the following
data ruleName (string), groupByPolicy (boolean),
groupByQuote (boolean) and paymentTypeArr (array of
payment types).

 l installmentNo - null.

TABLE OF CONTENTS 283

BILLING AND COLLECTION USER GUIDE

 l groupedProductsArr - An array of objects containing the
following: minDate - currentDate, maxDate - maxDate and
productIds - [], an empty array.

 l nonBroker - null.

Output parameters: returnArr - An array of objects with the
newly created invoices.

getpaymentTypeIdArr
This function gets the Ids of the payment types, based on each
payment type name.

Input parameters: paymentTypeArr - An array containing the
payment type names.

Output parameters: paymentTypeIdArr - An array containing
payment type Ids.

installmentHasStatementDetail
Based on policyNo and installemntNo this function makes a
query to check if the installment has any invoice details already
created. Next, it checks the installment due date period, based on
the groupedProducts or invariantDate.

Input parameters:

 l policyNo - The number of the selected policy.

 l installmentNo - The number of the policy installment, that
needs to be paid.

 l groupedProducts - Grouping rule.

 l invariantDate - The date when the payment for the
installment is due.

TABLE OF CONTENTS 284

BILLING AND COLLECTION USER GUIDE

Output parameters: groupedProducts / false if query result has
values or not.

insertStatement
This function is used to insert a new invoice based on an array
returned by query from the getStatementByPaymentType
function.

Input parameters:

 l installmentGroupResult - array returned by query from
getStatementByPaymentType function

 l insertStatementObj - An object containing the following
data ruleName (string), groupByPolicy (boolean),
groupByQuote (boolean) and paymentTypeArr (array of
payment types).

Output parameters: returnObj - The object containing the invoice.

getStatementNo
Based on the invoice Id, this function returns the number of the
invoice - statementNo.

Input parameters: statementId - The Id of the invoice.

Output parameters: statementNo - The number of the invoice.

getInstallment
This function gets all the installment data necessary for invoice
generation. Next, it changes the status of the invoice into
Generated.

Input parameters:

TABLE OF CONTENTS 285

BILLING AND COLLECTION USER GUIDE

 l installmentGroupResult - An array returned by query
from getStatementByPaymentType function.

 l insertStatementObj - An object containing the following
data ruleName (string), groupByPolicy (boolean),
groupByQuote (boolean) and paymentTypeArr (array of
payment types).

 l statementId - The Id of the invoice.

Output parameters: N/A.

insertStatementDetail
Based on the installment list, this function can generate a new
statementDetail (invoice). When so, it updates the Statement
Due Date, on the installment. Next, this function changes the
installment business status into Statement Issued.

Input parameters:

 l installmentsList - An array of installments objects.

 l statementId - The Id of the invoice.

Output parameters: statementDetailArr - An array containing
the Id of the statementDetail/s.

Generate Outgoing Payments API
This functionality allows you to add outgoing payment requests in the system, through
an API call. Once added, the system automatically populates the referenceNo
attribute for the new outgoing payment request, by using a sequencer (OUGP).

TABLE OF CONTENTS 286

BILLING AND COLLECTION USER GUIDE

When calling the API, the defaultBusinessStatus key is optional. However, if you fill it
in, you must also fill in the scheduledDate key. See more details in the Request Data
Parameters section, below.

NOTE
All new requests are registered in Draft status, when no value is sent for the
defaultBusinessStatus key.

Generate an Outgoing Payment Request -
Example

A user registers a new outgoing payment request in the system:

1 var p = {
2 "paymentRequest":{
3 "paymentNo":"Pay0029.2",
4 "paymentType":"premiumReturn",
5 "paymentAmount":500,
6 "paymentDueDate":"2021-08-20",
7 "creationDate":"2021-08-20",
8 "proposedBy":"Jane.Doe",
9 "currency":"RON",

10 "scheduledDate":"2021-08-30",
11 "defaultBusinessStatus": "Approved", // available

values: "Proposed", "Approved"
12 "comments":"This is the payment request."
13 },
14 "paymentBeneficiary":{
15 "beneficiaryType":"payer",
16 "beneficiaryCategory":"Individual person",
17 "uniqueID":"2920202020220",
18 "firstName":"Jane",
19 "lastName":"Doe",
20 "name":null,
21 "iban":"RO69BNKB000100000000000"
22 },
23 "payerDetails":{
24 "payerName":"CompanyName",
25 "iban":"RO69BNKB000100000000000"
26 }
27 } ;

TABLE OF CONTENTS 287

BILLING AND COLLECTION USER GUIDE

28 ebs.callActionByNameAsync("FTOS_PYMT_
AddOutgoingPaymentRequest", p).then(function(e)
{console.log(e)});

Request Data Parameters

IMPORTANT! When creating a new outgoing payment record, the
following information should be sent in order for the action to be
successful. All fields are mandatory, except when declared otherwise.

Parameter Description
paymentRequest Array with the payment request details.
paymentBeneficiary Array with details to identify the payment beneficiary.
payerDetails Array with details to identify the payer.

paymentRequest Parameter
Field Observations
Payment No The unique number of the outgoing payment.

Payment Type

The payment type. The option set can take the
following values: paymentInAdvance, paymentOrder,
paymentWriteOff, schedule, paymentReturn,
paymentExternal, paymentClaim,
paymentUnallocated, paymentPartner,
brokerPremiumPayment, brokerCommissionPayment,
brokerClaimPayment, brokerClientReturnPayment,
brokerPaymentReturn, outgoingPayment, and
bankCharges.

Payment
Amount The outgoing payment amount.

Payment Due
Date The outgoing payment due date.

Creation Date The outgoing payment request creation date.
Proposed by The user who makes the request.
Currency The currency of the outgoing payment.
Scheduled
Date

The date scheduled for the payment. Not mandatory
for payments registered in Draft status.

TABLE OF CONTENTS 288

BILLING AND COLLECTION USER GUIDE

Field Observations
Default
Business
Status

The default business status for the payment request.
The available values are: Proposed and Approved. This
key is optional.

Comments Not a mandatory field.

paymentBeneficiary Parameter
Field Observations

Beneficiary
Type

Option set used to choose the beneficiary type. The
option set values are as follows: payer, insured,
contractor, policyBeneficiary, broker, serviceProvider,
and other.

Beneficiary
Category Set to Company or Individual.

Unique ID No The unique number of the outgoing payment
beneficiary.

Name The name of the outgoing payment beneficiary.
IBAN The IBAN of the outgoing payment beneficiary.
Bank Must correspond to IBAN.

payerDetailsParameter
Field Observations
Payer Name The name of the payer.
Payer IBAN The IBAN of the payer.
Payer Bank Must correspond to IBAN.

Response
This is an example of a response:

1 {
2 "UIResult": {
3 "NavigateToEntityPage": false,
4 "NavigateToEntityPageOnEdit": false,
5 "NavigateToEntityFormName": null,
6 "NavigateToEntityName": null,
7 "NavigateToEntityId": null,
8 "NavigateToEntityInsertDefaults": null,

TABLE OF CONTENTS 289

BILLING AND COLLECTION USER GUIDE

9 "NavigateToUrl": null,
10 "DownloadFile": null,
11 "ReloadPage": false,
12 "Message": null,
13 "IsSuccess": false,
14 "Data": "

{\"
isSuccess\
":true,\"
errorMessage\":null,\"errorCode\":null,\"result\":
{\"outgoingPaymentRequestId\":\"394cc3cf-5059-455f-8b6b-
93054f201dd7\",\"paymentReference\":\"REF0000090\"}}",

15 "NavigateToPageNo": null
16 },
17 "Message": null,
18 "IsSuccess": true,
19 "ClientScript": null,
20 "Serialized": null,
21 "ErrorCode": 0
22 }

Response description:

Key Description
errorCode Error code.
isSuccess Marks weather the request is successful or not.
errorMessage Error message.

outgoingPaymentRequestId The unique id of the outgoing payment request
that was added.

paymentReference The payment reference of the request that was
added.

Error Messages
The following are the error messages that can be encountered during
outgoing payments generation process:

Code Text Description

ERR01.01 ERR01.01 - Invalid
paymentType!

This payment type is not found
in the FTOS_PYMT_
OutgoingPaymentType option
set.

TABLE OF CONTENTS 290

BILLING AND COLLECTION USER GUIDE

Code Text Description

ERR01.02 ERR01.02 - Invalid
currency! No active currency found

ERR01.03 ERR01.03. - Invalid
beneficiaryCategory!

This error appears when the
beneficiary category is not
found in the FTOS_CMB_
AccountType entity or the
account type selected is "Self
employed indi-vidual".

ERR01.04

ERR01.04 - First name
and last name
mandatory for
individual person
beneficiary category!

When the "Individual person"
beneficiary category is
selected, the first name and
last name are mandatory.

ERR01.05

ERR01.05 - Name is
mandatory for legal
person beneficiary
category!

When the "Legal person"
beneficiary category is
selected, the name is
mandatory.

ERR01.06

ERR01.06 - Name
should be empty for
individual person
beneficiary category!

The attribute name should be
empty when the "Individual
person" beneficiary category is
selected.

ERR01.07

ERR01.07 - First name
should be empty for
legal person
beneficiary category!

The attribute first name should
be empty when the "Legal
person" beneficiary category is
selected.

ERR01.08

ERR01.08 - Last name
should be empty for
legal person
beneficiary category!

The attribute last name should
be empty when the "Legal
person" beneficiary category is
selected.

ERR01.09 ERR01.09 - Payment
number is mandatory!

The payment number should
be completed.

ERR01.10

ERR01.10 - Payment
amount is mandatory
and must be a
number!

The payment amount should
be filled in with a number.

ERR01.11
ERR01.11 - Payment
due date is mandatory
and must be a date!

The payment due date should
be filled in with a date.

TABLE OF CONTENTS 291

BILLING AND COLLECTION USER GUIDE

Code Text Description

ERR01.12

ERR01.12 - Payment
creation date is
mandatory and must
be a date!

The payment creation date
should be filled in with a date.

ERR01.13

ERR01.13 - Payment
scheduled date is
mandatory and must
be a date!

The payment scheduled date
should be filled in with a date.

ERR01.13.1

ERR01.13.1 - Payment
scheduled date has to
be equal or bigger than
the current date!

The payment scheduled date
has a validation to be equal or
greater than today.

ERR01.13.2
ERR01.13.2 - Payment
scheduled date must
be a date!

The payment scheduled date
should be filled in with a date.
Only appears when
defaultBusinessStatus is not
completed.

ERR01.14 ERR01.14 - Invalid
beneficiary Type!

This beneficiary type is not
defined in the FTOS_PYMT_
OutgoingPaymentBeneficiary
option set.

ERR01.15
ERR01.15 - Payment
beneficiary iban is
mandatory!

The IBAN should be
completed.

ERR01.15.1
ERR01.15.1 - Payment
beneficiary iban is not
valid!

Invalid payment beneficiary
IBAN.

ERR01.15.3

ERR01.15.3 - No
matching Bank for
payment beneficiary
iban!

This bank couldn't be identified
based on the payment
beneficiary IBAN filled in.

ERR01.16 ERR01.16 - Payer name
is mandatory!

The payer name should be
completed.

ERR01.17 ERR01.17 - Payer iban
is mandatory!

The payer IBAN should be
completed.

ERR01.17.1 ERR01.17.1 - Payer
iban is not valid! Invalid payer beneficiary IBAN.

ERR01.17.3
ERR01.17.3 - No
matching Bank for
payer iban!

This bank couldn't be identified
based on the payer IBAN filled
in.

TABLE OF CONTENTS 292

BILLING AND COLLECTION USER GUIDE

Code Text Description

ERR01.18
ERR01.18 - Payment
number must be
unique!

There is another payment
registered with this number.

ERR01.19 ERR01.19 - Invalid user
for ProposedBy. Invalid user.

ERR01.20
ERR01.20 - Invalid
business status!

Invalid business status!

Endpoint
FTOS_PYMT_AddOutgoingPaymentRequest

Endpoint used to run the FTOS_PYMT_AddOutgoingPaymentRequest server
automation script. See below.

Server Automation Script
FTOS_PYMT_AddOutgoingPaymentRequest - Script called with a data object.
This script first calls the validateRequest function from the
BillingCollectionAPIs server automation script library. If the function returns
the isSucces answer, then the script uses the same object to call the
addOutgoingPaymentRequest function, from the BillingCollectionAPIs
server automation script library.

Server Automation Script Library
The BillingCollectionAPIs library validates a request for an outgoing payment
and creates a new request record based on the object received from the
FTOS_PYMT_AddOutgoingPaymentRequest script.

The library contains the following functions:

isNullOrEmpty
This function verifies if an input value is null or empty.

Input parameters: value - The value that needs validation.

Output parameters:true/ false - The result of the validation.

TABLE OF CONTENTS 293

BILLING AND COLLECTION USER GUIDE

isValidDate
This function validates the date.

Input parameters: dateString - The date string formatted like
yyyy-MM-dd.

Output parameters: true/ false.

getBankId
This function returns the Id of the bank from FTOS_PYMT_Bank
entity.

Input parameters: bankCode - string - The code of the bank.

Output parameters: bankId - The Id of the bank, from FTOS_
PYMT_Bank entity.

getPaymentNo
This function returns the Id of the outgoing payment from the
FTOS_PYMT_OutgoingPayment entity

Input parameters: paymentNo - string - The number of the
payment.

Output parameters: outgoingPaymentId - The Id of the outgoing
payment, from FTOS_PYMT_OutgoingPayment entity.

getUserId
This function returns the userId from the System User entity.

Input parameters: userName - string - The name of the user.

Output parameters: userId - The Id of the user, from the System
User entity.

getPaymentDetails

TABLE OF CONTENTS 294

BILLING AND COLLECTION USER GUIDE

This function returns the reference number from FTOS_PYMT_
OutgoingPayment entity.

Input parameters: outgoingPaymentId - string - The Id of the
outgoing payment request.

Output parameters: referenceNo - The reference number from
FTOS_PYMT_OutgoingPayment entity.

getPayerDetailsFromProcessor
This function returns the default payer details (name and IBAN), set
in the processor FTOS_PYMT_OutgoingPayments_PayerDetails.
This allows the user, or a third-party app, to call the API for
generating an outgoing payment request without sending the payer
details.

Input parameters: N/A.

Output parameters: payer details - A JSON structure containing the
values from the processor.

addOutgoingPaymentRequest
This function inserts a new outgoing payment request, based on the
given object from the FTOS_PYMT_
AddOutgoingPaymentRequest server automation script.

Input parameters: input – object – The object received from the
FTOS_PYMT_AddOutgoingPaymentRequest server automation
script. The object contains the details about:

 l the payment request: paymentNo, paymentType,
paymentAmount, paymentDueDate, creationDate,
proposedBy, currency, scheduledDate, comments;

 l the payment beneficiary: firstName, lastName - for
individual persons, name - for legal persons and other
category, uniqueID, beneficiaryType,

TABLE OF CONTENTS 295

BILLING AND COLLECTION USER GUIDE

beneficiaryCategory, iban;
 l the payer: payerName, iban.

Output parameters:

 l id - The Id of the newly inserted outgoing payment request.

 l referenceNo - The reference number of the newly inserted
outgoing payment request.

The addOutgoingPaymentRequest function also uses some of
the functions presented above and the getIdByAttrib function,
presented below.

getIdByAttrib
This is a function from the FTOS_INS_Utils library. This function
returns the Id of the given attribute.

Input parameters:

 l entityName – string – The entity name.

 l searchAttribute – string – The name of the attribute.

 l searchValue – string – The value of the attribute .

Output parameters: The Id of the searched attribute. If there are no
entries with the searched value, the output is null.

validateOSIValues
This function validates an option set value from an option set.

Input parameters:

TABLE OF CONTENTS 296

BILLING AND COLLECTION USER GUIDE

 l optionsetName - string - The name of the option set.

 l optionsetItemValue - string - The value of the option set
item.

Output parameters: true/ false.

validateRequestReturn
This function returns an object result with one of the following
responses: isSuccess, errorMessage, errorCode.

Input parameters:

 l isSuccess - The success message.

 l errorMessage - The error message.

 l errorCode - The error code.

Output parameters: rez - An object containing the result.

validateRequest
This function validates the input object from the FTOS_PYMT_
AddOutgoingPaymentRequest server automation script and uses
some of the functions presented above.

Input parameters: input – object – The object received from the
FTOS_PYMT_AddOutgoingPaymentRequest server automation
script.

Output parameters: rez - An object containing the following details:
{isSucces:true/false, errorMessage: “message error“,
errorCode: “error code”}.

validateScheduledDate

TABLE OF CONTENTS 297

BILLING AND COLLECTION USER GUIDE

The function validates if the scheduled date has the correct date and
format, and if it was submitted (for the case when it was marked as
mandatory).

Input parameters:

 l rez - The result object.

 l scheduledDate - The scheduled date.

 l mandatory - boolean - The variable to determine if a
scheduled date is mandatory.

Output parameters: returns an object - rez, with the followings
{isSucces: true/false, errorMessage: “message error“, errorCode:
“error code”}

Generate UK Direct Debit Mandate API
This functionality adds new UK direct debit mandates in the system, based on API
requests received from other FintechOS solutions, from other systems or external
applications (like digital journeys). On the FTOS_PYMT_GenerateMandate entity, for
the newly generated UK direct debit mandate, the API response populates the
following attributes: Account Holder First Name, Account Holder Last
Name, Bank Sort Code, Account Number, and Reference (the policy number).
All mandates are registered in Draft status, with mandateStage =N (new) and Begin
Date = null. See more below.

Generate Direct Debit Mandate API Example
The system registers a new direct debit mandate request, containing details
from one policyholder.

1 let inputData = {

TABLE OF CONTENTS 298

BILLING AND COLLECTION USER GUIDE

2 "accountHolderFirstName": "John",
3 "accountHolderLastName": "Doe",
4 "bankSortCode": "04-00-26",
5 "accountNumber": "55743513",
6 "reference": "80001033"
7 }
8
9 ebs.callActionByNameAsync('FTOS_PYMT_GenerateMandate',

inputData).then(function(e) {
10 console.log(e)
11 });

Request Data Parameters
The following is the list of data parameters included in the request:

Parameter Description
accountHolderFirstName The first name of the payer.
accountHolderLastName The last name of the payer.

bankSortCode Sort code of the bank - it specifies the bank
branch.

accountNumber The account number used for the direct debit
payment.

reference The policy number.

Response
The following is an example of a response:

1 {
2 "isSuccess": true,
3 "errorMessage": null,
4 "errorCode": null,
5 "result": null
6 }

Response description:

Key Description
errorCode Error code.
isSuccess Marks weather the request is successful or not.
errorMessage Error message.

TABLE OF CONTENTS 299

BILLING AND COLLECTION USER GUIDE

Key Description

result

An object containing the following key: mandateId -
the Id of the newly generated mandate OR a
confirmation message, when a mandate for the input
reference already exists. If so, the following message is
displayed: "There is already a mandate with the
reference number... (x)... for addition!" (The message
also includes the specific mandate reference number.)

Error Messages
The following are the error messages that can be encountered during the API
invoice generation process:

Code Text Description

ERR.BL.50201 The input parameters keys
are wrong or missing!

inputData doesn’t have all
the properties or some
properties are wrong.

ERR.BL.50202 There are no input
parameters!

This error appears when
provided empty data.

ERR.BL.50103
The input parameters
should not contain null or
empty values!

inputData has properties with
null or empty values.

Endpoint
The FTOS_PYMT_GenerateMandate endpoint is used to run the FTOS_
PYMT_GenerateMandate server automation script.

Server Automation Script
FTOS_PYMT_GenerateMandate - Script called with a data object.

This script calls the BillingCollectionAPIs library and, also, executes the
following:

 l Validates the request data object.

 l If all the necessary conditions are met, it uses the input parameters to
generate a new direct debit mandate.

TABLE OF CONTENTS 300

BILLING AND COLLECTION USER GUIDE

Server Automation Script Library
From the BillingCollectionAPIs library, the GenerateDIDEMandate function is
used. This function wraps all the functions from bellow:

validateRequest
This function validates the request fields.

Input parameters: inputData - The object containing the keys
needed to call the endpoint.

Output parameters - An object containing the keys to describe the
result of the validation:

 l isSuccess - true/ false.

 l errorMessage - null or error message as described in the
error messages list.

 l errorCode - null or error code as described in the error
messages list.

 l result = [] - An array containing the result of the request.

generateMandate
This function inserts the data from the inputData object into
FTOS_PYMT_DirectDebitMandateBuffer entity and calls the
function performActionsOnMandate from the PYMT_Mandate
library which adds a new direct debit mandate into the FTOS_
PYMT_DirectDebitMandate entity.

Input parameters: inputaData - An object containing the keys
needed to call the endpoint.

Output parameters: result - An object containing the following
key: mandateId - the Id of the newly generated mandate OR a
confirmation message, when a mandate for the input reference
already exists. If so, the following message is displayed: "There is
already a mandate with the reference number... (x)... for addition!"
(The message also includes the specific mandate reference number.)

TABLE OF CONTENTS 301

BILLING AND COLLECTION USER GUIDE

Billing Notifications
This functionality helps insurers to send notifications to the customers, regarding the
status of their invoices. The notifications functionality can be toggled on and off by
modifying the BillingNotification system parameter - where 0 is Off and 1 is On.

Server Side Script Libraries
FTOS_INSP_CoreInsuranceNotification - This library contains methods that help in the
process of notifying the customers about their invoices. From this library the following
functions are used:

getCurrencyDetails
This function returns different attributes from the FTOS_CMB_Currency
entity, based on the currency Id.

Input parameters: currencyId - (string) - The Id of the FTOS_CMB_
Currency entity.

Output parameters: query - Array that contains an object with the following
results: Code.

getAccountDetails
This function returns different attributes from the Account entity, based on
the account Id.

Input parameters: accountId - (string) - The Id of the Account entity.

Output parameters: query - Array that contains an object with the following
results: FirstName, LastName, Email, dateOfBirthInv.

 getPolicyDetails

TABLE OF CONTENTS 302

BILLING AND COLLECTION USER GUIDE

This function returns different attributes from the FTOS_INSPA_Policy entity,
based on the statement detail Id.

Input parameters: statement - (string) - The Id of the FTOS_PYMT_
StatementDetail entity.

Output parameters: query - Array that contains an object with the following
results: PolicyNo, policyBeginDate, insuranceTypeId.

 getInsuranceDetails
This function returns different attributes from the FTOS_IP_InsuranceType
entity, based on the insurance type Id.

Input parameters: typeId - (string) - The Id of the FTOS_IP_InsuranceType
entity.

Output parameters: query - Array that contains an object with the following
results: Name.

 getStatementDetails
This function returns different attributes from the FTOS_PYMT_Statement
entity, based on the statement Id.

Input parameters: statementId - (string) - The Id of the FTOS_PYMT_
Statement entity.

Output parameters: query - Array that contains an object with the following
results: customerId, statementNo.

 addPassword
This function encrypt a .pdf file, using the date of birth from the Account
entity. If the account doesn’t have a date of birth registered, the file will not
be encrypted.

Input parameters:

TABLE OF CONTENTS 303

BILLING AND COLLECTION USER GUIDE

 l dob - (Invariant Date) - The date of birth from the Account entity.

 l fileName - The Id of the .pdf file.

Output parameters: N/A

 getPaymentConfirmationDetails
This function returns the data needed to populate the
InvoicePaymentConfirmation email template, based on the context.

Input parameters: context - (object) - The context object received.

Output parameters: tokens - Object that contains the following
information: InvoiceDate, FirstName, LastName, InvoiceNumber,
PolicyType, PolicyNo, BeginDate, Email, Attachments.

 getInvoiceGeneratedDetails
This function returns the data needed to populate the
InvoiceGeneratedNotification email template, based on the context.

Input parameters: context - (object) - The context object received.

Output parameters: tokens - Object that contains the following
information: InvoiceDate, FirstName, LastName, InvoiceNumber,
PolicyType, PolicyNo, BeginDate, Email, Attachments.

 getFollowUpDetails
This function returns the data needed to populate the InvoiceFollowUp
email template, based on the Id of the invoice.

Input parameters: statementId - (string) - The Id of the FTOS_PYMT_
Statement entity.

Output parameters: tokens - Object that contains the following
information: InvoiceDate, FirstName, LastName, InvoiceNumber,
PolicyType, PolicyNo, BeginDate, Email, Attachments.

TABLE OF CONTENTS 304

BILLING AND COLLECTION USER GUIDE

 sendClientNotification
This function sends the notifications, based on the type of the email. If the
account doesn’t have an email registered, the notification will not be sent.

Input parameters:

 l emailDetails - (object) - Object containing the information to
populate the email templates.

 l type - (string) - The type of notification to be sent.

Output parameters: N/A.

Processors
The FTOS_INSP_CoreInsuranceNotification processor is used for setting the
NotificationConfiguration parameter. This parameter is an object containing the
following settings:

 l followUp - Follow up notification,

 l invoiceGenerated - Invoice Generated notification,

 l paymentConfirmation - Payment Confirmation notification.

Business Workflow Configuration Actions

DRAFT_Generated
GenerateInvoiceNotification Action

It calls getInvoiceGeneratedDetails(context) and
sendClientNotification(emailDetails, type) functions from
FTOS_INSP_CoreInsuranceNotification server side script library in order to
get the data needed to populate the email template and send the
notification to the customer.

TABLE OF CONTENTS 305

BILLING AND COLLECTION USER GUIDE

It calls the getFlowProcessorSettingsByType(flowSettingsName,
processorSettingsType, processorSettingsName) function from
the FTOS_DFP_FlowProcessorSettings server side library, in order to get the
processor settings.

The notification is sent if the payment type is different than the broker
collection payment type and if the BillingNotification system
parameter is set to1.

CLOSED_Paid
PaymentConfirmationNotification Action

It calls getPaymentConfirmationDetails(context) and
sendClientNotification(emailDetails, type) functions from
FTOS_INSP_CoreInsuranceNotification server side script library in order to
get the data needed to populate the email template and send the
notification to the customer.

It calls the getFlowProcessorSettingsByType(flowSettingsName,
processorSettingsType, processorSettingsName) function from
the FTOS_DFP_FlowProcessorSettings server side library, in order to get the
processor settings.

The notification is sent if the payment type is different than the broker
collection payment type and if the BillingNotification system
parameter is set to1.

On Demand Scripts
JOB FTOS_PYMT_FollowUpInvoice - on demand script which calls the
getFollowUpDetails(statementId) and sendClientNotification
(emailDetails, type) functions from the FTOS_INSP_CoreInsuranceNotification
server side script library in order to get the data needed to populate the email
template and send the notification to the customer.

TABLE OF CONTENTS 306

BILLING AND COLLECTION USER GUIDE

It calls the getFlowProcessorSettingsByType(flowSettingsName,
processorSettingsType, processorSettingsName) function from the FTOS_
DFP_FlowProcessorSettings server side library, in order to get the processor settings.

It calls the getValues(code) function from the FTOS_PA_FlowParameter server
side library in order to get the insurance parameter.

The notification is sent if the payment type is other than broker collection payment
and if the BillingNotification system parameter is set to1.

Input parameters: N/A

Output parameters: N/A

Scheduled jobs
FTOS_PYMT_FollowUpInvoice -

This job is scheduled to run every day at 6:00 AM in order to send notifications to
invoices that are still in status Generated x days before the invoice’s due date. The
number of days is determined by the NoOfDaysFollowUpInvoice insurance
parameter.

Schedule Services - FTOS_PYMT_FollowUpInvoice, on demand server automation
script.

Security Roles
FintechOS security architecture is a unified security design aimed at empowering
FintechOS clients to address the necessities and potential risks involved in a certain
scenario or environment. The Security Roles are an inbuilt part of the Core DPA
Platform security architecture, designed to help you mitigate cybercrime-related risks
and keep data secure across all your business flows. Consequently, you use Security
Roles to protect sensitive data and configure various organization layers to allow for
better communication, collaboration, or reporting.

TABLE OF CONTENTS 307

BILLING AND COLLECTION USER GUIDE

NOTE
For more details, see also the Default Security Roles documentation.

On top of the platform's default security roles, the Billing and Collection solution
comes with three pre-defined Security Roles which allow you to:

 l Control the level of user access to various actions, functions or operations.

 l Maintain compliance with security standards with regard to processing sensitive
information.

 l Safeguard end-to-end ownership over your billing and collection operations.

The following are the defined security roles for the Billing and Collection solution:

Security role Description

Operations
user

This is the user role for performing imports in the system. For example
you use this role for uploading bank statements, notification files from
online payment processors and direct debit notification or instruction
files. Please see the table below for the available access privileges for this
user role.

Operations
superUser

This is the user role for operating with payment data. For example you
use this role for allocating or deallocating payments, initiating outgoing
payment requests, or delete installments. Please see the table below for
the available access privileges for this user role.

Operations
manager

This is the user role for approving payment requests. Please see the
table below for the available access privileges for this user role.

The following are the defined security privileges per every role:

Functionality Operations
User

Operations
SuperUser

Operations
Manager Operation

Invoices
 x x x V View
 I (Insert)
 x E (Edit)
Installments
 x x x V
 I

 x E - can remove
installment

TABLE OF CONTENTS 308

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Studio/21.2/UserGuide/Content/Security/securityRoles.htm

Functionality Operations
User

Operations
SuperUser

Operations
Manager Operation

Premiums
collected -
Payments

 x x x V
 x x I
 x E
Bank statements
 x x x V
 x I
 E
Payments -
Incoming and
Outgoing

 x x x V
 x x I
 x E
Payment returns
and Unallocated
payments

 x x V
 x I
 x E
Outgoing
Payment Request
Approval

 x V
 x I
 x E
Payments
Allocation

 x x x V
 x I
 x E
Outgoing
Payment
Requests

 x x x V
 x I
 x E
DIDE Mandates

TABLE OF CONTENTS 309

BILLING AND COLLECTION USER GUIDE

Functionality Operations
User

Operations
SuperUser

Operations
Manager Operation

 x x V
 x I
 x E
DIDE Notification
file

 x x V
 x I
 E
DIDE Payment
Instructions file

 x x V
 I
 E
DIDE Payment
Confirmations

 x x V
 x I
 E
DIDE Payment
Denied

 x x V
 x I
 E

For the UK flow:

Security role Description

Operations
user

This user has the rights to see the DIDE files (External Reports) menu, lists
and forms, also having the possibility to import new files: ADDACS and
ARUDD files.
FTOS_PYMT_ADDACSReasonType - read
FTOS_PYMT_DIDE_ADDACSDetail - read
FTOS_PYMT_DIDE_ADDACS - crate, read, update
FTOS_PYMT_ARUDD - create, read, update
FTOS_PYMT_ARUDDDetail - create, read, update
FTOS_PYMT_DIDEMandateInstruction - read
FTOS_PYMT_DIDEMandateInstructionDetail - read
FTOS_DFP_FlowSettings - read

TABLE OF CONTENTS 310

BILLING AND COLLECTION USER GUIDE

Security role Description

Operations
manager

View rights for all new DIDE entities:
FTOS_PYMT_ADDACSReasonType - read
FTOS_PYMT_DIDE_ADDACSDetail - read
FTOS_PYMT_DIDE_ADDACS - read
FTOS_PYMT_ARUDD - read
FTOS_PYMT_ARUDDDetail - read
FTOS_PYMT_DIDEMandateInstruction - read
FTOS_PYMT_DIDEMandateInstructionDetail - read

HINT
 Apart from the Billing and CollectionSecurity Roles, you can always define new
roles to meet your business needs. For more details, consult the Creating or Editing
Security Roles documentation.

Digital Assets
The following are the digital assets of the Billing and Collection solution:

Billing & Collection
SDK Code: FTOS_INSP_BillingCollection 2.2.0

Description: This digital asset contains all the important customization items
defining the solution, combining data model elements with SDK scripts. It
includes business entities, attributes, business entity extensions, business
workflows, entity forms and entity views, covering the data model of the
solution. Client-side and server-side scrips used to automate and enhance
the capabilities of the solutions are also part of this asset. It also includes
data import templates and config data definition used to populate the
entities included in the solution.

Items Contained: It includes business entities, attributes, business entity
extensions, business workflows, entity forms and entity views, covering the
data model of the solution.

Billing and Collection Menu

TABLE OF CONTENTS 311

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Studio/21.2/UserGuide/Content/Security/creatingSecurityRoles.htm
https://docs.fintechos.com/Studio/21.2/UserGuide/Content/Security/creatingSecurityRoles.htm

SDK Code: FTOS_INSP_BillingCollection_Menu 2.2.0

Description: This digital asset contains a collection of menu items used to
create menu entries for the most important flows included in the solution.

Items Contained: Menu items.

Billing and Collection Import
SDK Code: FTOS_INSP_BillingCollection_Import 2.2.0

Description: This digital asset includes default settings that can be used to
customize the behavior of the solution or to automate the processes.

Items Contained: It includes scheduled jobs, insurance parameters, flow
settings, and versioning settings for the solution entities.

TABLE OF CONTENTS 312

BILLING AND COLLECTION USER GUIDE

Dashboards
Dashboards bundle together data views that are either needed more often than
others or they simply have priority, in your everyday work. Dashboards are also a
flexible way to work with your data since they can be easily updated when needed -
for example when a flow must be given priority over other flows due to an increase in
the frequency of its use.

The Billing and Collection solution comes with a configured dashboard, displayed in
your portal. The dashboard provides links to the most important flows, making it
easier for you to access the Unallocated Payments List, the Direct Debit Mandates List
or to insert Bank Statements. The dashboard also displays views of the Invoices List,
the Outgoing Payments Requests List and the Payments List allowing you to rapidly
inspect the latest payment data listed in any of the mentioned sections.

Below, you can see the example of a dashboard:

Depending on your level of authority (security role), you might have access to
different FintechOS insurance solutions, functionalities or processes, Billing and

TABLE OF CONTENTS 313

BILLING AND COLLECTION USER GUIDE

Collection being just one of them. As you can see in the image above, the portal
dashboard is yet another way to help you smoothly navigate between the insurance
applications that you use.

Finally, since Dashboards is a feature that can be easily adjusted in Innovation Studio,
you also have the means to configure the Billing and Collection dashboard to respond
to your particular needs. So, if more widgets or fewer views are needed to help you
keep your financial data organized, accessible, and comprehensible this is easily done
with Innovation Studio.

For more details about adjusting your dashboards, consult the Dashboards
documentation.

HINT
Instead of starting from scratch, you can start by adjusting the dashboard offered by
the Billing and Collection solution.

TABLE OF CONTENTS 314

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/Studio/21.2/UserGuide/Content/DigitalFrontends/DigitalExperiencePortal/creatingDashboards.htm

Glossary
For more terms, check also the FintechOS Getting Started Glossary!

B

Bank Statement

A list of financial transactions, issued by a bank.

Business Formulas

FintechOS solution handling advanced computations mapped to different business needs - such as
scoring, pricing, and more.

Business Workflows Processor

FintechOS solution dedicated to processing business workflows automatically.

D

Direct Debit Payment

By way of a Direct Debit Instruction (Mandate), the bank transfers the premium amounts into the
insurer's account, on behalf of the insured.

E

Excess Amount

The excess amount represents the policyholder's financial contribution to the claims made on the
policy. For a policyholder, agreeing to pay an excess amount leads to a discounted total premium
per policy.

TABLE OF CONTENTS 315

BILLING AND COLLECTION USER GUIDE

https://docs.fintechos.com/GettingStarted/Content/Glossary.htm

N

Northstar Insurance Suite

This suite contains all FintechOS solutions for insurance.

P

Payment Order

Bank payment solution for transferring funds from an account to another.

Product Factory

FintechOS solution dedicated to building and managing products.

R

Revenue

The earning in the particular depth of insurance after paying the claims and similar other
expenses.

TABLE OF CONTENTS 316

BILLING AND COLLECTION USER GUIDE

	Overview
	Installing Billing and Collection
	Prerequisites

	Payments Management
	Invoices
	Invoices View
	Invoice Form
	Remove Installments from Invoices

	Bank Statements
	Bank Statements View
	Uploading Bank Statements

	Payments
	Payments View
	Insert Payment Form

	Unallocated Payments
	Unallocated Payments View
	Unallocated Payments Form
	Allocating Payments
	Deallocating Payments

	Outgoing Payments Operations
	Outgoing Payment Requests
	Outgoing Payment Requests View
	Outgoing Payment Requests Form
	Approving Outgoing Payment Requests

	Outgoing Payments Instruction Files
	OPI Files View and Form

	Adding Payment Requests
	Returning Payments

	Direct Debit
	Setting The Solution For DIDE Processing
	Direct Debit Business Workflow
	Direct Debit SEPA
	External Reports

	Direct Debit UK
	Direct Debit UK Functionalities

	Configurations
	Flow Parameters and Scheduled Jobs
	1 Flow Parameters
	2 Scheduled Jobs

	Import Bank Statements
	Payment Group Insert Journey
	Payment Group Journey
	Business Workflow Configurations Actions
	Server Side Script Libraries

	Incoming Payments
	Invoice Generation
	Scheduled Job
	Server Automation Scripts
	Server Automation Script Libraries
	Filtering Configurations

	Automatic Allocation
	Payment Allocation
	Payment Deallocation

	Manual Allocation
	FTOS_PYMT_Payment_EditForm Journey
	Server Automation Scripts
	Server Automation Script Library

	SEPA Direct Debit
	Digital Journeys
	On Demand Server Automation Scripts
	Business Workflow Configuration Actions
	Endpoints
	Processors
	Sequencers
	Server Side Script Libraries
	Scheduled Jobs

	UK Direct Debit
	Digital Journeys
	On Demand Scripts
	Business Workflow Configuration Actions
	Endpoints
	Processors
	Server Side Script Libraries
	Scheduled Jobs

	Outgoing Payments
	Outgoing Payments Admin
	FTOS_PYMT_Payment_EditFormOutgoing Journey
	FTOS_PYMT_OutgoingPaymentFileReadOnly Form Journey
	On Demand Scripts
	Endpoints
	Server Side Script Libraries
	Scheduled jobs

	Outgoing Payments Allocation
	Server Automation Scripts
	Outgoing Payment Deallocation

	Manual Outgoing Payment Requests
	Form Client Side Scripts
	Endpoints
	Server Side Script Libraries
	FTOS_GetAccountData
	FTOS_OutgoingPaymentRequest

	On Demand Scripts

	Billing And Collection Endpoints
	Generate Statements API
	Generate Outgoing Payments API
	Generate UK Direct Debit Mandate API

	Billing Notifications
	Server Side Script Libraries
	Processors
	Business Workflow Configuration Actions
	On Demand Scripts
	Scheduled jobs

	Security Roles
	Digital Assets

	Dashboards
	Glossary

